纳米技术的了解范例(12篇)

来源:其他

纳米技术的了解范文篇1

20世纪80年代以前,纳米TiO2的研究开发目的主要是作为精细陶瓷原料、催化剂、传感器等,需求量不大,没有形成大的生产规模。80年代以后,开发的纳米TiO2用作透明效应和紫外线屏蔽剂,为纳米TiO2打开了市场,使纳米TiO2的生产和需求大大增加,成为钛白工业和涂料工业的一个新的增长点。

由于纳米TiO2在催化及环境保护等方面具有广阔的应用前景,并可用于日用产品、涂料、电子、电力等工业部门,因此,纳米TiO2展现出巨大的市场前景。日本、美国、英国、德国和意大利等国对纳米TiO2进行了深入的研究,并已实现纳米TiO2的工业化生产。目前全世界已经有十几家公司生产纳米TiO2,总生产能力估计在(6000~10000)t/a,单线生产能力一般为(400~500)t/a。

根据莎哈里本公司统计,2003年全球纳米TiO2销售量仅为1800t左右,其消费量与产品应用见表1。

近几年,有关纳米TiO2的新建装置已很少报道,主要是已建成装置的生产能力已远远超出市场的实际消费量,多数厂家处于开工不足或停产的状态。主要原因是目前国际上公认的纳米TiO2制备和应用技术还有待于提高,技术要点和难点主要表现在以下几个方面:①国际上纳米TiO2的价格为(30~40)万元/t,其成本大致是销售价格的2/5,原料和工艺路线的选择是降低生产成本的关键因素;②纳米TiO2的晶型和粒度控制技术;③金红石型纳米TiO2的表面处理技术;④纳米TiO2应用分散技术;⑤纳米TiO2应用功能的提升技术:⑥纳米TiO2产业化成套技术。由于以上条件的制约,使得纳米TiO2的应用和发展受到限制。

我国纳米TiO2的现状

在国外普遍开展了纳米TiO2的制备和应用技术开发,并取得了阶段性成果,我国纳米TiO2的研究在“九五”期间形成了高潮,据了解,进行纳米粉体制备技术研究的科学院所和高校几乎都在进行和进行过纳米TiO2的研究。重庆大学应用化学系是国内最早(1989年)研究纳米TiO2的单位,华东理工大学、中国科学院上海硅酸盐研究所是目前研究技术较全面、报道最多的单位。国内主要研究单位与制备方法见表2。

目前,国内涉足纳米TiO2生产的公司约有十家,总生产能力在1000多吨。四川攀枝花钢铁(集团)公司钢铁研究院年产200t生产装置是我国技术装备较先进、品种最为齐全的装置,可以生产金红石型和锐钛型两大系列各有4个(10~40)nm的粉体品种;由淮北芦岭煤矿和腾岭工贸有限公司共同组建的安徽科纳新材料有限公司年产100t生产基地在宿州市建成;江苏河海纳米科技股份有限公司投资5000万元,已经建成年产500t的规模;青岛科技大学纳米材料重点实验室与海尔集团联合开发的首条具有百吨生产能力的生产线已经建成并一次试车成功;济南裕兴化工总厂拥有先进的纳米TiO2生产线(已通过省级鉴定),具备年产100t生产能力,可提供纳米锐钛型、金红石型的粉体和浆料共4个品种、多种规格的产品;此外,四川永禄科技有限公司、浙江舟山明日纳米有限公司、江苏五菱常泰纳米材料有限公司、河北茂源化工有限公司纳米TiO2装置也已建成。纳米TiO2的发展

1)纳米TiO2生产的特点

纵观国外纳米TiO2的生产,存在着以下特点:生产原料主要为四氯化钛、硫酸氧钛,生产方法主要有气相法和液相法。气相法主要有以四氯化钛为原料的氢氧火焰水解法,而液相法主要是以四氯化钛和硫酸氧钛为原料的化学沉淀法,且多数生产厂家为钛白粉生产厂,充分利用了原有氯化法和硫酸法生产装置的中间产物、生产技术、公用工程和生产管理方面的经验。

我国纳米TiO2的研究和生产具有以下几个特点:①对纳米TiO2的研究多、面广,力量分散,低水平的重复性研究现象严重,企业介入的力度不够;②重点进行了纳米TiO2制备技术的开发,对纳米TiO2的应用技术开发力度较小,尤其是有关应用的关键技术没有突破性进展;③工程开发能力薄弱,因纳米TiO2项目一般投资较小,一些大型的工程公司(设计院)对工程化的兴趣不大,不愿投入人力物力进行工程开发,④生产规模小、基本采用湿法工艺,土法上马,产品质量差,现有市场空间较小,没有给企业带来想象中的高利润。目前,我国纳米TiO2的市场价格大致为(7~42)万元/t,因为晶型、质量和产地不同价格差距较大,国内生产的产品价格为(7~24)万元/t。

2)我国纳米TiO2生产的发展建议

生产工艺的比较

气相法反应速度快,能实现连续化生产,而且制备的纳米TiO2纯度高、分散性好、团聚少、比表面活性大,产品特别适合于精细陶瓷材料、催化剂材料和电子材料。但气相法反应在高温下瞬间完成,要求反应物料在较短的时间内达到微观上的均匀混合,对反应器的形式、设备的材质、加热方式、进料方式均有很高的要求。目前气相法在我国处于小试阶段,欲达到工业化生产,还要解决一系列工程问题和设备材质问题。

与气相法相比,液相法生产的原料成本低了一个数量级。而且具有原料无毒、无危险性、常温液相反应、工艺过程简单易控制、易扩大到工业规模生产、三废污染少、产品质量稳定等优点。因此;液相法中硫酸氧钛和四氯化钛液相中的化学沉淀法最具工业化发展潜力。

原料生产路线

我国钛白工业近十年来发生了很大的变化,取得了令人瞩目的成就,其硫酸法钛白的生产已与国外先进技术差距不多,总生产能力已跃居世界第二位,仅次于美国。

根据纳米TiO2的生产特点,结合国内钛白生产的具体情况,我们提出了以硫酸法生产的中间产物硫酸氧钛为原料的生产路线,充分利用我国在硫酸法钛白工业生产中所取得的技术,以及工程化方面的经验,发展我国的纳米TiO2工业。

生产规模的确定

目前,国内纳米TiO2的需求量一种观点认为应在1万t左右,一种观点认为在1000t以下,我们认为在目前的情况下,后一种观点可能更符合国内的现实。目前国内纳米TiO2的生产能力已经能够满足现有市场的需求,但随着我国纳米产品的普及程度和人们消费观念的改变以及我国整体经济呈现稳步发展的态势,纳米TiO2必将迎来广阔的市场发展空间。因此,新上项目应在(400~500)t/a的生产规模,同时最好建在钛白生产厂内。

生产方法的选择

化学沉淀法一般分为均匀沉淀法、直接沉淀法和共沉淀法三种。其中均匀沉淀法具有工艺简单、产品质量好、易于操作等特点,是最具工业化发展前景的一种制备方法。均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢、均匀地释放出来。该方法中,加入溶液的沉淀剂不立刻与沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢生成,使之通过溶液中的化学反应缓慢生成沉淀剂,只要控制好生成沉淀剂的速度,就可避免浓度不均匀现象,使过饱和度控制在适当的范围内,从而控制粒子的生长速度,获得粒度均匀、致密、便于洗涤、纯度高的纳米粒子,常用的均匀沉淀剂为尿素等。以硫酸氧钛为前驱物,以尿素为沉淀剂制备纳米二氧化钛的反应原理为:尿素水溶液在70℃左右开始水解,其反应式为:CO(NH2)2+3H2O=2NH3·H2O+CO2

由于尿素的分解速度受加热温度和尿素浓度的控制,因此可以使尿素分解速度降得很低,从而可得粒径分布均匀和粒径小的纳米TiO2。尿素的分解产物CO2和NH3,在反应或煅烧后均为气体,易挥发,不会对产品的纯度和质量造成影响。生成沉淀剂NH3·H2O在TiOSO4溶液中分布均匀、浓度低,使得沉淀物TiO(OH)2均匀生成:

TiOSO4+2NH3·H2O=TiO(OH)2+(NH4)2SO4

TiO(OH)2煅烧得到TiO2:

TiO(OH)2=TiO2+H2O

存在的问题

纳米技术的了解范文1篇2

1.1纳米技术

纳米技术是20世纪80年代末诞生且正在崛起的新技术,主要是在0.1-100nm尺度范围内,研究物质组成的体系中电子、原子和分子运动规律与相互作用,其研究目的是按人的意志直接操纵电子、原子或分子,研制出人们所希望的、具有特定功能的材料和制品。纳米科技将成为21世纪科学技术发展的主流,它不仅是信息技术、生物技术等新兴领域发展的推动力,而且因其具有独特的物理、化学、生物特性为涂料等领域的发展提供了新的机遇。

1.2纳米材料

纳米材料主要由纳米晶粒和晶粒界面两部分组成,其晶粒中原子的长程有序排列和无序界面成分的组成后有大量的界面(6×1025m3/10nm晶粒尺寸),晶界原子达15%~50%,且原子排列互不相同,界面周围的晶格原子结构互不相关,使得纳米材料成为介于晶态与非晶态之间的一种新的结构状态[1]。狭义上,纳米材料是指粒径在0.1-100nm范围内的或具有特殊物理化学性能的材料。广义上,纳米材料是指在三维空间中至少有一维长度在0.1-100nm范围内的或具有纳米结构的材料。按化学组成可分为:纳米金属、纳米晶体、纳米陶瓷、纳米玻璃、纳米高分子和纳米复合材料等。由于纳米材料具有表面效应、体积效应、量子尺寸效应、宏观量子隧道效应和一些奇异的光、电、磁等性能,将其用于涂料中后,除了可以改性传统涂料外,更为重要的是可以制备各种功能涂料,如具有抗辐射、耐老化、抗菌杀菌、隐身等特殊功能的涂料。

2纳米材料在涂料领域中的应用

现阶段纳米材料在涂料中的应用主要为两种情况[2]:(1)纳米材料经特殊处理后,添加到传统涂料中分散后制成的纳米复合涂料(Nanocompositecoating),使涂料的各项指标均得到了显著的提高。将纳米离子用于涂料中所得到的一类具有抗辐射、耐老化、具有某些特殊功能的涂料称为纳米复合涂料。(2)完全由纳米粒子和有机膜材料形成的纳米涂层材料,通常所说的纳米涂料均为有机纳米复合涂料。目前,用于涂料的纳米粒子主要是某些金属氧化物(如TiO2、Fe2O2、ZnO等)、纳米金属粉末(如纳米Al、Co、Ti、Cr、Nd等)、无机盐类(CaCO3)和层状硅酸盐(如一堆的纳米级粘土)[3]。

2.1纳米TiO2在涂料中的应用

2.1.1随角异色效应

由于纳米二氧化钛晶体的粒径大约是普通钛白粉的1/10,远远低于可见光的波长,本身具有透明性,又对可见光具有一定程度的遮盖,透射光在铝粉表面反射与在纳米二氧化钛表面反射产生了不同的视觉效果。到1991年,全世界已有11种含超细二氧化钛的金属闪光漆。目前,福特、克莱斯乐、丰田、马自达等许多著名的汽车制造公司都已使用含有超细二氧化钛的金属闪光漆[4]。

2.1.2抗老化性能

提高材料抗老化性能的传统方法是添加有机紫外线吸收剂,纳米TiO2粒子是一种稳定的、无毒的紫外光吸收剂。因为用作涂料基料的高分子树脂受到太阳中紫外线的长期照射会导致分子链的降解,影响涂膜的物理性能,因此若能屏蔽太阳光中的紫外线,就可大幅提高漆膜的耐老化性能。郭刚[5]等研究发现利用金红石型纳米TiO2优异的紫外线屏蔽性能改性传统耐候型聚酯——TGIC粉末涂料可以大幅度地提高其耐老化性能。

2.1.3抗菌杀毒

纳米TiO2有抗菌杀毒作用,用于涂料是涂料发展中的一个重大成就。纳米二氧化钛具有高的光催化性,在紫外光的照射下能分解出自由移动的带负电的电子e-和带正电的空穴h+形成电子——空穴对,该电子——空穴对能与空气中的氧和H2O发生作用,通过一系列化学反应形成原子氧(O)氢氧自由基(OH),这种原子氧和氢氧自由基具有很高的化学活性,能与细菌中的有机物反应生成二氧化碳和水,从而达到杀灭细菌的作用。[6]

纳米TiO2的抗菌杀毒作用已成为国内外关注的焦点。日本已有不少企业开发出纳米TiO2光催化涂料并实现了商业化生产。目前,由于国内对于纳米TiO2的研究大多还处于实验阶段,在涂料性能的提高和完善方面还有大量的工作要做,因此,对纳米涂料的研究要不断深入,以提高我国涂料的工业水平,推动纳米涂料的发展和应用。

2.2纳米SiO2在涂料中的应用

纳米SiO2具有三维网状结构,拥有庞大的比表面积,表现出极大的活性,能在涂料干燥时形成网状结构,同时增加了涂料的强度和光洁度,而且还提高了颜料的悬浮性,能保持涂料的颜色长期不变。在建筑内外墙涂料中,若添加纳米SiO2,可明显改善涂料的开罐效果,涂料不分层,具有触变性、防流挂、施工性能良好等优点,尤其是抗沾污性能大大提高,具有优良的自清洁能力和附着力。纳米SiO2还可与有机颜料配用,可获得光致变色涂料。

欲使纳米SiO2材料在涂料中真正地得到广泛应用,须解决纳米SiO2在涂料中的分散稳定性问题。通常的做法是加入表面活性剂包裹微粒或反絮凝剂形成双电层的措施。同时在分散时可配合使用超声波分散。

2.3纳米ZnO在涂料中的应用

纳米ZnO等由于质量轻、厚度薄、颜色浅、吸波能力强等优点而成为吸波涂料研究的热点之一。在阳光的照射下纳米ZnO在水和空气中具有极强的化学活性,能与多种有机物发生氧化反应(包括细菌中的有机物),从而把大多数细菌和病毒杀死。ZnO也具有良好的紫外线屏蔽作用,粒径60nm的ZnO对波长300-400nm的紫外线有良好的吸收和散射作用,因此可以作为涂料的抗老化添加剂。日本已经开发出用树脂包覆的片状ZnO紫外线屏蔽剂[7]。在涂料中添加纳米ZnO可改善它的抗氧化性能,使其具有抗菌性能

2.4纳米氧化铁在涂料中的应用

纳米氧化铁作为颜料无毒无味,具有很好的耐温、耐侯、耐酸、耐碱以及高彩度、高着色力、高透明度和强烈吸收紫外光的优良性能,可广泛用于高档汽车涂料、建筑涂料、防腐涂料、粉末涂料,是较好的环保涂料。紫外线分解木材中的木质素而破坏细胞结构导致木材老化,纳米氧化铁颜料分散于涂层中,由于颗粒直径小不会散射光线、涂层成透明状态且吸收紫外线辐射,起到保护木材的作用。左美祥[8]等研究发现:在树脂中掺入纳米级的TiO2(白色)、Cr2O3(绿色)、Fe2O3(褐色)、ZnO等具有半导体性质的粉体,会产生良好的静电屏蔽性能。日本松下电器公司研究所据此成功开发了适用于电器外壳的树脂基纳米氧化物复合的静电屏蔽涂料。与传统的树脂基碳黑复合的涂料相比,树脂基纳米氧化物复合涂料具有更为优异的静电屏蔽性能,而且后者在颜色选择方面也更为灵活。用纳米级Fe3O4与树脂复合制成了磁性涂料,目前这方面的制备工艺已有所突破而进入产业化阶段。

2.5纳米CaCO3在涂料中的应用

纳米CaCO3作为颜料填充剂,具有细腻、均匀、白度高、光学性能好等优点,随着纳米碳酸钙的粒子微细化,填料粒表面的原子数目占整个总原子数目的比例增大,使粒子表面的电子结构和晶体结构都发生变化,到了纳米级水平。填料粒子将成为有限个原子的集合体,表现出常规粒子所没有的表面效应和小尺寸效应,使纳米材料具有一系列优良的理化性能。它添加到涂料胶乳中,加强了透明性、触变性和流平性。触变性是纳米CaCO3改善胶乳涂料各项性能的主要因素。同时能对涂料形成屏蔽作用,达到抗紫外老化和防热老化的目的和增加涂料的隔热性。

杜振霞[9]等研究表明:在纳米CaCO3改性的涂料中,如果CaCO3固相体积分数达到20%时,涂料的粘度曲线存在低剪切稀化幂律特征区和高剪切牛顿两个区域,而且有明显的触变性。当乳胶漆聚合物乳液的粒径为10-100nm,表面张力非常低,有极好的流平性、流变性、润湿性与渗透性,表现超常规的特性。

2.6其它新型纳米涂料

纳米隐身涂料(雷达波吸收涂料)系指能有效地吸收入射雷达波并使其散射衰减的一类功能涂料。当将纳米级的羧基铁粉、镍粉、铁氧体粉末改性的有机涂料涂到飞机、导弹、军舰等武器装备上,可使这些装备具有隐身性能,使它们在很宽的频率范围内可以逃避雷达的侦察,同时也有红外隐身作用。美国研制的超细石墨纳米吸波涂料,对雷达波的吸收率大于99%,其他金属超细粉末如Al,Co,Ti,Cr,Nd,Mo等,也具有很好的潜力。法国研制出一种宽频微波吸收涂层,这种吸收涂层由粘结剂和纳米材料、填充材料组成,具有很好的磁导率,在50MHz-50GHz范围内具有良好的吸波性能。我国也有相关的研究,如不同粒径的Fe3O4在1-1000MHz频率范围对电磁波具有吸收性能,随着频率的增加,纳米Fe3O4吸收能效增加,且纳米粒径越小,吸收效能越高。

3纳米涂料研究中存在的技术问题

首先是纳米材料在涂料中的稳定分散问题。由于纳米粒子比表面积和表面张力都很大,容易吸附而发生团聚,在溶液中将其有效地分散成纳米级粒子是非常困难的。寻找合适的分散剂来分散纳米材料,并采用合适的稳定剂将良好分散的纳米材料粒径稳定在纳米级,是纳米技术在涂料改性中获得广泛应用必须解决的最关键问题。其次,纳米材料加入量的适度问题。一般而言,纳米材料的用量与涂料性能变化之间的关系曲线近似于抛物线,开始时随着纳米材料添加量的增加,涂料性能大幅度提高,到一定值后,涂料性能增幅趋缓,最后达到峰值:之后,随着纳米材料添加量的进一步增加,涂料的性能反而呈迅速下降的趋势,同时也增加了成本。因此,做好对比试验,选好纳米材料添加量也十分关键。最后,必须开展纳米涂料施工工艺的研究。纳米涂料就本身而言只是一个半成品,只有施工完毕后才真正成为最终产品,而现实情况是人们大都将注意力集中在纳米涂料产品本身,而忽略了施工工艺的研究,致使纳米涂料无法达到其应有的效果。

4纳米技术在涂料领域的应用展望

今后纳米涂料的发展主要将体现在以下几个方面:(1)新的纳米原材料的开发和商品化。即根据不同材料的物理化学性能,开发研制出新纳米改性材料,使之具有更多更新的功能。(2)研究纳米材料在涂料中的分散和稳定性。即探索纳米材料颗粒与涂料间的相互作用和混合机理,并根据纳米粉体在涂料中分散成纳米级和保持分散稳定性的原理,开发新的表面改性剂和稳定剂,以提高纳米材料在涂料中的改性效果。(3)加强纳米材料表征方法和测试技术的研究。即为了能更好地利用纳米材料的特殊性能,必须研究新的测试手段对纳米材料进行研究,并将传统纳米材料的测试方法进一步完善和标准化。降低成本,并逐渐实现纳米技术的工业化、商品化,从而改变我国高档、高性能涂料大量依赖进口的状况,是将来的研究重点。

纳米技术的了解范文

纳米技术被誉为21世纪的科学,现已成为世界各国研究的热点领域。它的迅猛发展将在世界范围内引发一场包括生命科学、信息技术、生态环境技术、能源技术在内的几乎覆盖所有工业领域的大革命。

从纳米技术的发展来看,激光干涉纳米光刻技术、纳米加工、纳米测量技术,以及纳米制造等,都有着不可忽视的地位和作用。原子力显微镜(atomicforcemicroscope,简称AFM)是纳米技术研究中最常用也是最基础的一个仪器。它是利用微悬臂感受和放大悬臂上探针与受测样品原子之间的作用力,从而达到检测的目的,具有原子级的分辨率[1]。

随着人们对纳米技术的深入研究以及对AFM的不断开发,使原子力显微镜不仅仅具有检测的功能,还可以实现对样品的“推”、“拉”、“刻划”、“切割”、“搬运”等功能,增大了AFM的使用范围。其优势在于操作过程不受环境影响,既可以在大气环境下工作,也可以在液相下工作。这对人们在生物医学等方面的研究工作,带来了便利。

对于纳米技术的基础教学而言,AFM是学生们感知纳米量级,实现简单操作的最直接的方式之一。因此,本论文针对AFM的特点及纳米技术相关教学的知识点,将AFM工作原理及实际扫描、操作后得到的图片引入到课堂中进行辅助教学,取得了一定的效果,提升了学生们的学习兴趣。

一、AFM原理

AFM是将一个对微弱力极敏感的微悬臂的一端固定住,另一端装有一微小的纳米级针尖。当针尖与样品表面轻轻接触,由于针尖尖端原子与样品表面原子间存在极微弱的排斥力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将对应于针尖与样品表面原子间作用力的等位面而在垂直于样品的表面方向起伏运动。利用光学检测法或隧道电流检测法,可测得微悬臂对应于扫描各点的位置变化,从而可以获得样品表面形貌的信息[2]。也就是说,微悬臂的形变是对样品-针尖相互作用的直接反映。

AFM研究对象可以是有机固体、聚合物以及生物大分子等,其可以在空气或者液体下对样品直接进行成像或操作,分辨率很高。因此,AFM被广泛应用于纳米测量及纳米加工等技术中。

二、AFM教学实例

针对纳米测量所涉及的两个重要领域:纳米长度测量和纳米级的表面轮廓测量。列举了AFM扫描的利用多光束激光干涉光刻制备单晶硅形貌图。

观测者不但可以直接看到被测样品的表面形貌,还可以通过AFM二维图像形成相应的三维像,从而获得样品表面结构的深度,大小以及长度等重要信息参数,如图2所示。

针对纳米操作技术所涉及到的对样品的“推”、“拉”及“刻划”等操作,列举了相关原理图及AFM的扫描图像。

通过AFM对原子的操作及样品形貌的扫描,可以让学生更为直观地了解AFM以及纳米技术的相关概念及原理。同时,清晰的扫描图像可以进一步促进学生对纳米技术相关教学课程内容的理解和认识。

纳米技术的了解范文篇4

【论文摘要】本文首先探讨了近似计算在静态分析中的应用问题,其次分析了纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册,最后电子技术在时间与频率标准中的应用进行了相关的研究。因此,本文具有深刻的理论意义和广泛的实际应用价值。

一、近似计算在静态分析中的应用

在电子技术中应运中,近似计算贯穿其始终。然而,没有近似计算是不可想象的。而精确计算在电子技术中往往行不通,也没有其必要。尽管近似计算会引入一定的误差,但这个误差控制得好,不会对分析其它电路产生大的影响。所以关键在于我们如何掌握,特别是如何应用近似计算。

在工作点稳定电路中的应用要进行静态分析,就必须求出三极管的基电压,必须忽略三极管静态基极电流。这样,我们得到三极管的基射电子的相关过程及结论。

二、纳米电子技术急需解决的若干关键问题

由于纳米器件的特征尺寸处于纳米量级,因此,其机理和现有的电子元件截然不同,理论方面有许多量子现象和相关问题需要解决,如电子在势阱中的隧穿过程、非弹性散射效应机理等。尽管如此,纳米电子学中急需解决的关键问题主要还在于纳米电子器件与纳米电子电路相关的纳米电子技术方面,其主要表现在以下几个方面。

(1)纳米si基量子异质结加工

要继续把现有的硅基电子器件缩小到纳米尺度,最直截了当的方法是采用外延、光刻等技术制造新一代的类似层状蛋糕的纳米半导体结构。其中,不同层通常是由不同势能的半导体材料制成的,构建成纳米尺度的量子势阱,这种结构称作“半导体异质结”。

(2)分子晶体管和导线组装纳米器件即使知道如何制造分子晶体管和分子导线,但把这些元件组装成一个可以运转的逻辑结构仍是一个非常棘手的难题。一种可能的途径是利用扫描隧道显微镜把分子元件排列在一个平面上;另一种组装较大电子器件的可能途径是通过阵列的自组装。尽管,purdueuniversity等研究机构在这个方向上取得了可喜的进展,但该技术何时能够走出实验室进入实用,仍无法断言。

(3)超高密度量子效应存储器

超高密度存储量子效应的电子“芯片”是未来纳米计算机的主要部件,它可以为具备快速存取能力但没有可动机械部件的计算机信息系统提供海量存储手段。但是,有了制造纳米电子逻辑器件的能力后,如何用这种器件组装成超高密度存储的量子效应存储器阵列或芯片同样给纳米电子学研究者提出了新的挑战。

(4)纳米计算机的“互连问题”

一台由数万亿的纳米电子元件以前所未有的密集度组装成纳米计算机注定需要巧妙的结构及合理整体布局,而整体结构问题中首当其冲需要解决的就是所谓的“互连问题”。换句话说,就是计算结构中信息的输入、输出问题。纳米计算机要把海量信息存储在一个很小的空间内,并极快地使用和产生信息,需要有特殊的结构来控制和协调计算机的诸多元件,而纳米计算元件之间、计算元件与外部环境之间需要有大量的连接。就现有传统计算机设计的微型化而言,由于电线之间要相互隔开以避免过热或“串线”,这样就有一些几何学上的考虑和限制,连接的数量不可能无限制地增加。因此,纳米计算机导线间的量子隧穿效应和导线与纳米电子器件之间的“连接”问题急需解决。

(5)纳米/分子电子器件制备、操纵、设计、性能分析模拟环境

当前,分子力学、量子力学、多尺度计算、计算机并行技术、计算机图形学已取得快速发展,利用这些技术建立一个能够完成纳米电子器件制备、操纵、设计与性能分析的模拟虚拟环境,并使纳米技术研究人员获得虚拟的体验已成为可能。但由于现有计算机的速度、分子力学与量子力学算法的效率等问题,目前建立这种迅速、敏感、精细的量子模拟虚拟环境还存在巨大困难。

三、交互式电子技术手册

交互式电子技术手册经历了5个发展阶段,根据美国国防部的定义:加注索引的扫描页图、滚动文档式电子技术手册、线性结构电子技术手册、基于数据库的电子技术手册和集成电子技术手册。目前真正意义上的集成了人工智能、故障诊断的第5类集成电子技术手册并不存在,大多数电子技术手册基本上位于第4类及其以下的水平。需要声明的是,各类电子技术手册虽然代表不同的发展阶段,但是各有优点,较低级别的电子技术手册目前仍然有着各自的应用价值。由于类以上的电子技术手册在信息的组织、管理、传递、获取方面具有明显的优点。

简单的说,电子技术手册就是技术手册的数字化。为了获取信息的方便,数字化后的数据需要一个良好的组织管理和提供给用户的形式,电子技术手册的发展就是围绕这一过程来进行的。

四、电子技术在时间与频率标准中的应用

时间和频率是描述同一周期现象的两个参数,可由时间标准导出频率标准,两者可共用的一个基准。

1952年国际天文协会定义的时间标准是基于地球自转周期和公转周期而建立的,分别称为世界时(ut)和历书时(et)。这种基于天文方面的宏观计时标准,设备庞大,操作麻烦,精度仅达10-9。随着电子技术与微波光谱学的发展,产生了量子电子学、激光等新技术,由此出现了一种新颖的频率标准——量子频率标准。这种频率标准是利用原子能级跃迁时所辐射的电磁波频率作为频率标准。目前世界各国相继作成各种量子频率标准,如(133cs)频标、铷原子频标、氢原子作成的氢脉泽频标、甲烷饱和以及吸收氦氖激光频标等等。这样做后,将过去基于宏观的天体运动的计时标准,改变成微观的原子本身结构运动的时间基准。这一方面使设备大为简化,体积、重量大减小;另一方面使频率标准的稳定度大为提高(可达10-12—10-14量级,即30万年——300万年差1秒)。1967年第13届国际计量大会正式通过决议,规定:“一秒等于133cs原子基态两超精细能级跃迁的9192631770个周期所持续的时间”。该时间基准,发展了高精度的测频技术,大大有助于宇宙航行和空间探索,加速了现代微波技术和雷达、激光技术等的发展。而激光技术和电子技术的发展又为长度计量提供了新的测试手段。

总之,在探讨了近似计算在静态分析中的应用问题、纳米电子技术急需解决的若干关键问题和交互式电子技术应用手册后,广大科技工作者对电子技术在时间与频率标准中的应用知识的初步了解和认识。在当代高科技产业日渐繁荣,尖端信息普遍进入我们生活之中的同时,国家经济建设和和谐社会的构建离不开我们科技工作者对新理论的学习和新技术的应用,因此说,本文具有深刻的理论意义和广泛的实际应用价值是不足为虚的。

【参考文献】

[1]张凡,殷承良《现代汽车电子技术及其在仪表中的应用[j]客车技术与研究》,2006(01)。

[2]李建《汽车电子技术的应用状况与发展趋势》[j],《汽车运用》,2006(09)。

纳米技术的了解范文篇5

【分类号】X50

1纳米技术

纳米(nm)技术是指在0.1-100nm范围内,研究电子、原子和分子内在规律和特征,并用于制造各种物质的一门崭新的综合性科学技术。纳米尺度的物质颗粒接近原子大小,此时量子效应开始影响到物质的性能和结构。由纳米级结构单元构成的纳米材料,在机械性能、磁、光、电、热等方面与普通材料有很大不同,具有辐射、吸收、催化、吸附等新特性。人类通过在原子、分子和超分子水平上控制了纳米结构来发现纳米材料的奇异特征,以及学会有效地利用这些特定功能产品,最终能够仿照自然生态中非常复杂的过程,这也是纳米科技的最终目的。

纳米技术包含下列四个主要方面:

(1)纳米材料:当物质到纳米尺度以后,大约是在1-100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。人们就正式把这类材料命名为纳米材料。

(2)纳米动力学:主要是微机械和微电机,或总称为微型电动机械系统,用于有传动机械的微型传感器和执行器、光纤通讯系统,特种电子设备、医疗和诊断仪器等,用的是一种类似于集成电器设计和制造的新工艺。特点是部件很小,刻蚀的深度往往要求数十至数百微米,而宽度误差很小。这种工艺还可用于制作三相电动机,用于超快速离心机或陀螺仪等。虽然它们目前尚未真正进入纳米尺度,但有很大的潜在科学价值和经济价值。

(3)纳米生物学和纳米药物学:如在云母表面用纳米微粒度的胶体金固定dna的粒子,在二氧化硅表面的叉指形电极做生物分子间互作用的试验,磷脂和脂肪酸双层平面生物膜,dna的精细结构等。新的药物,即使是微米粒子的细粉,也大约有半数不溶于水;但如粒子为纳米尺度(即超微粒子),则可溶于水。

(4)纳米电子学:包括基于量子效应的纳米电子器件、纳米结构的光/电性质、纳米电子材料的表征,以及原子操纵和原子组装等。当前电子技术的趋势要求器件和系统更小、更快、更冷。更小是指响应速度要快。更冷是指单个器件的功耗要小。但是更小并非没有限度。

纳米技术是建设者的最后疆界,它的影响将是巨大的。

2纳米技术在环境邻域的应用

纳米材料的比表面积大,表面活性中心多,是催化剂的必要条件。国际上已将纳米材料作为新一代催化剂进行研究和开发。近年来的发展方向是纳米复合化,例如,氟石结构的纳米Ce2-x和Cu组成纳米复合材料,可用于汽车尾气中SO2、CO的消除。已有生产厂家开发出可以用来代替汽车中的金属构件的纳米粒子增强型复合材料,这种纳米复合材料的广泛使用可能使汽油的燃烧量每年减少15亿升,二氧化碳的排放量每年至少减少50亿千克。我国山东小鸭电器集团采用纳米复合抗菌除味塑料制作洗衣机的外筒,具有耐高温、耐摩擦、耐冲击、韧性好和硬度高等特点,还有很好的光洁度和很强的除垢能力,不但可以防止污垢在筒壁沉积,随时保持洗衣机内部清洁,还可以防止细菌滋生,解除了衣物交叉感染的可能,开辟了健康洗衣机的新纪元。

用黏土和聚合物的纳米粒子替代轮胎中的炭黑是一项生产环保型、耐磨损轮胎的新技术,利用纳米材料对紫外线的吸收特性而制作的日光灯管不仅可以减少紫外线对人体的损害,而且可以提高灯管的使用寿命。把具有导电性能的纳米颗粒,如炭黑、金属粒子等加入到高聚物中,可以改善高聚物的导电性,节约能源。

3纳米技术在环境领域的潜在突破

3.1有效利用资源

纳米技术是从原子和分子开始制造材料和产品。这种从小到大的制造方式需要的材料较少,造成污染程度较低。纳米复合陶瓷,因其优异的耐高温、高强度等性能,有望应用于高温发动机中,其燃烧热效率可增加一倍,且燃烧完全,污染降低。由于纳米技术导致产品微型化,使所需资源减少,不仅可达到"低消耗、高效益",而且成本低廉。可以预测,未来资源浪费,造价昂贵的大型机械设备将逐步淘汰,以实现资源消耗率的"零增长"。

3.2用于对水和空气的处理

消除水和空气中最细微的污染物(分别为300nm和50nm),使空气和饮用水更加清洁。新型的纳米级净水剂具有很强的吸附能力,是普通净水剂的10-20倍,可将污水中的悬浮物和铁锈、异味等污物除去。通过纳米孔径的过滤装置,还能把水中的细菌、病毒去除。净化和淡化海水的选择性滤膜,不仅成本低,而且所需量不足目前的十分之一。

3.3监测大气污染

大气中含有的C、N、S等元素的氧化物可导致酸雨和温室效应,因此它们在大气中的含量必须被实时监测。现有监测技术成本高,不便于移动作业,所需温度高,而利用纳米材料的高比表面积能对吸附气体有快速反应,吸附后能改变其物理性质,且反应可逆,具有能再生的特性。研制出可用于监测大气中的有害气体,可在室温下工作、造价低廉、体积小的监测器。

3.4提供有效储氢方式

物理和化学方法储氢,需要昂贵的设备。采用纳米材料可避免大晶粒储氢材料在反复吸收、释放氢气的循环过程中产生的氢脆现象,又可增加吸氢容量和吸氢速率,提供一种有效而清洁的储氢方式,这种材料如果用来制造燃料电池汽车中的氢容器,可有效避免空气污染。

4结束语

纳米技术应用前景十分广阔,经济效益十分巨大,美国权威机构预测,2010年纳米技术市场估计达到14400亿美元,纳米技术未来的应用将远远超过计算机工业。专家指出,纺织、建材、化工、石油、汽车、军事装备、通讯设备等领域,将免不了一场因纳米而引发的"材料革命"现在我国以纳米材料和纳米技术注册的公司有近100个,建立了10多条纳米材料和纳米技术的生产线。加入纳米技术的新型油漆,不仅耐洗刷性提高了十几倍,而且无毒无害无异味。纳米技术正在改善着、提高着人们的生活质量

尽管纳米技术仍有许多问题有待于进一步探索和解决,但它在高科技领域和传统产业中带来的冲击是不可否认的。它将成为新世纪信息时代的核心。随着人们对纳米材料研究的深入,纳米材料必将出现更为广阔的应用前景,纳米材料的大规模工业生产和商业应用也将成为现实。可以相信,纳米技术作为一门新兴科学,必将对环境保护产生出深远的影响,利用纳米技术解决污染问题将成为未来环境保护发展的必然趋势。

参考文献:

[1]曹学军等,神奇的纳米技术,国外科技动态,2010,9(3);33-36。

纳米技术的了解范文篇6

纳米,从未远离。它一直和其他技术相结合包装在层层“外衣”下,默默为人类提供着便利。未来,纳米科技有望在信息技术、生物医药、能源环境等领域,给人类带来更多福祉,甚至成为未来世界的改变者。

颠覆性变革印刷业

对于公众来说,纳米技术似乎远不如3D打印技术那么“看得见摸得着”,也不如智慧城市那样耳熟能详。它似乎被束之高阁,仅仅停留在实验室里。

事实真的如此吗?不久前,记者随同中科院北京综合研究中心工作人员到位于怀柔科教园区的中科纳新印刷技术有限公司,与印刷领域的纳米科技来了一次“面对面”接触。

“我们的核心技术是纳米材料绿色制版技术,这是一种非感光、无污染、低成本的新型印刷制版技术,”在中科纳新工作的中科院化学所博士纪艺琼介绍,“如果进一步推广,它必将引发整个印刷业颠覆性的变革。”

走进生产车间,几台看似不起眼的制版机躺在中间,几名工作人员正将一张铝板放进机器内,不多时,一张制好的版材就从机器尾端出口“跑”了出来。没有刺鼻的化学药水味,没有排污管道,甚至没有大的噪音,报纸、杂志制版过程轻而易举完成了。

“喷墨是手段,纳米是我们的核心技术,用纳米手段来实现亲水亲油区域的自由调控。”据纪艺琼介绍,纳米科技给印刷技术带来新的突破,不但环保,还可节约成本,“用这样的印刷设备,可节约30%左右的成本”。

据了解,该项技术的产业化正稳步推进,目前山东等地的报社已开始利用中科纳新的设备大规模印刷报纸。不产生废水,不造成重金属污染,印刷业革命已成为现实。

“纳米”就在我们生活中

除了印刷制版,纳米科技其实早已应用于人们的日常生活之中。只不过,它如同春雨一般,“随风潜入夜,润物细无声”,以至于公众都忽视了它的存在。

“拿纳米钢皂来说,其实技术早就成熟了,在很多地方也买得到。”据国家纳米科学技术指导协调委员会专家组秘书长、国家纳米科学中心科技管理部副主任任红轩介绍,纳米钢皂最早在德国生产出来,近年国内也出现同类产品。这种不锈钢肥皂,能有效去除鱼腥味等多种异味,但由于价格高昂并未进入超市销售,而主要在大商场贩卖。

“纳米科技早就无孔不入了。”在办公室里,任红轩拿起一部苹果手机向记者比画了一下,“这里面的芯片都是利用纳米技术制造出来的,但一般人谁知道?”

在芯片制造领域,纳米科技进步意义重大。每一台电脑、智能手机的生产都离不开芯片。目前,英特尔最先进的移动SoC(系统级芯片)采用22纳米工艺,高通的高端SoC采用28纳米工艺。采用纳米级较低的工艺生产芯片,可提高芯片的性能和能耗效率。最新消息是,英特尔将公布14纳米制造工艺,并表示将利用这项新工艺生产新一代智能手机和平板电脑芯片。毫无疑问,这将带来智能手机、平板电脑性能的新飞跃。

“前两年红火的纳米衣服,在技术上也有了新发展。”据任红轩介绍,国家纳米科学中心正在帮助一家企业研制一种耐高温、透气的纳米衣服,可用于高温下作业的特种行业,“我们提供材料和技术支持,他们生产”。

在医疗领域,纳米科技也早已应用多年。但相对于治疗,目前纳米科技主要在疾病检测领域发挥作用。科学家针对不同病情设计出不同试纸,“最简单的应用就是检查女性是否怀孕的试纸,用的也是纳米技术。”任红轩说。

据了解,2011年,国家纳米科学中心和检验检疫部门合作,研发了用于快速检测植物病毒的试剂盒,目前这种试剂盒已被海关部门投入使用。中科院生物物理所研究员阎锡蕴也向记者介绍,纳米科技在医学成像、农药检测等领域用途很广。她曾利用纳米模拟酶发展了肿瘤诊断新技术。该技术简便、快捷,突破了免疫组化法依赖于昂贵抗体的限制。

人们日常生活中必须用到的电池、手机显示屏等,也离不开纳米技术。“碳纳米管被用作导电材料,已经用于锂离子电池中,且实现了产业化;利用碳纳米管场发射性质制造的显示屏,在手机上的运用效果非常好,也已实现了产业化。”任红轩告诉记者,每当人们打开手机享受其带来的便利时,就已在不自觉地享受着纳米科技带给人类的福祉了。

下一次工业革命的核心?

1991年,碳纳米管为人类发现,此后被广泛用于超微导线、超微开关以及纳米级电子线路等研究中。1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达500亿美元……

如今,纳米技术与信息技术、生物技术共同构成当今世界高新技术三大支柱。包括美国、日本、欧盟、俄罗斯等50多个国家和地区都有各自明确的纳米科技发展战略,并投入巨资抢占战略制高点。美国甚至将纳米计划视为下一次工业革命的核心。

“从我国对纳米技术的支持力度看,纳米研究一直是热点。”据任红轩介绍,近年国家在这方面投入的经费基本上每年在10亿元以上。此外,地方政府也有相应投入。当前及未来纳米科技热点在哪里?任红轩称主要集中在以石墨烯为代表的纳米材料、生物医药、信息技术、能源环境几个方面。

“石墨烯是由单层碳原子组成的二维晶体,可是制备功耗更小、速率更高的新一代纳米电子元件的重要基础性材料。它的发现是纳米科技发展史上,距现在最近的一个里程碑事件。”任红轩表示。

在生物医药方面,尽管纳米科技用于新药研发成功的案例不多,但这并非纳米本身的原因,而是因为世界上对药品的研发、上市有着严格审定程序。实际上,科学家们已在实验室研发出很多种新药,在临床数据的表现都很好,但因为审批的原因,正式上市尚需时日。任红轩举例说,经过10多年努力,一种名为“富勒烯包钆”的药物被研发出来,可用于治疗各种肿瘤。它的原理是可在肿瘤组织形成一个包围圈,阻断肿瘤组织与外界物质交换,从而实现抑制其生长的目的。目前,研究人员通过实验发现,它在治疗乳腺癌、胰腺癌方面疗效显著,已申请了三个国际专利和20多个附属专利,并通过了动物实验阶段,未来如果能够走入市场,可能会改变目前现有的肿瘤治疗方式。

在信息技术方面,纳米科技对提高每平方英寸存储器的存储密度、提高中央处理器的计算速度有着至关重要的作用。目前,中科院上海微系统所在纳米相变存储器的产业化关键技术上已取得重大突破。“时下流行的可穿戴智能设备,其芯片、材料将来都离不开纳米技术。纳米技术的进步将推进这些智能设备的发展。”任红轩说。

纳米技术的了解范文1篇7

关键词:纳米材料;物理方法;化学方法

1引言

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《nanostructuredmaterials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(bui1dingblocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

2纳米材料的合成与制备方法

2.1物理制备方法?

2.1.1机械法?

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的fe-18cr-9w合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的zno纳米颗粒。

2.1.2气相法?

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,φ82mm的ge在6gpa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法?

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法?

2.2.1溶胶—凝胶法?

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。stephen等利用高分子加成物(由烷基金属和含n聚合物组成)在溶液中与h2s反应,生成的zns颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。marcusjones等以cdo为原料,通过加入zn(ch?3)?2和s[si(ch?3)?3]?2制得了zns包裹的cdse量子点,颗粒平均粒径为3.3nm,量子产率(quantumyield,qy)为13.8%。

2.2.2离子液法?

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。jiang等以bicl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的bi2s3纳米花。他们认为溶液的ph值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶bi2s3纳米棒。

2.2.3溶剂热法?

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。lou等采用单源前驱体bi[s?2p(oc?8h??17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系bi?2s?3纳米棒,且该方法适于大规模生产。liu等用bi(no3)3•5h2o、naoh及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72h制得了长达数毫米的bi2s3纳米带。

2.2.4微乳法?

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm-800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液

。自那以后,微乳理论的应用研究得到了迅速发展。1982年,boutonnet等人应用微乳法,制备出pt、pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

4结论

纳米材料由于具有特异的光、电、磁、催化等性能,可广泛应用于国防军事和民用工业的各个领域。它不仅在高科技领域有不可替代的作用,也为传统的产业带来生机和活力。随着纳米材料制备技术的不断开发及应用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产生重大影响。但到目前为止,开发出来的产品较难实现工业化、商品化规模。主要问题是:对控制纳米粒子的形状、粒度及其分布、性能等的研究很不充分;纳米材料的收集、存放,尤其是纳米材料与纳米科技的生物安全性更是急待解决的问题。这些问题的研究和解决将不仅加速纳米材料和纳米科技的应用和开发,而且将极大地丰富和发展材料科学领域的基础理论。

参考文献

[1]luy,liawpk,themechanicalpropertiesofnanostructuredmaterials.jom,2001,53(3):31.

[2]garystix,微观世界里的大科学,科学,2001,(12):18?20.

[3]张璐,姚素薇,张卫国,等.氧化铝纳米线的制备及其形成机理[j].物理化学学报,2005,2(11):1254?1288..

[4]李英品,周晓荃,周慧静,等.纳米结构mno?2的水热合成、晶型及形貌演化[j].高等学校化学学报,2007,28(7):1223?1226..

[5]ledenstoynn,crystallinegrowthcharacteristics,materprog,1998,35(2?4):289.

[6]王结良,梁国正,纳米制备新技术研究进展[j].河南化工,2003,(10):7?l0.

[7]王林等:纳米材料在一些领域的应用及其前景[j].纳米科技,2005,(4),6?90.

[8]刘建伟,刘有智,超重力技术制备纳米氧化锌的工艺研究[j].化学工程师,2001,(5):21?22.

[9]姚斌,丁炳哲,纳米材料制备研究[j].科学通报,1994,39:1656.

[10]刘海鹏等:纳米技术及其在精细化工中的应用[j].纳米科技,2005,(4),18?20,360.

[11]张万忠,李万雄,纳米材料研究综述[j].湖北农学院学报,2003,23(5):397?340.

[12]takakis,yatsuyas.nanoparticleproducedbysputtering[c]//14thinternationalcongressonelectronmicroscopy[j].cancun,mexico:[s.n]1998:469?470..

[13]杜芳林,崔作林,张志锟,等.纳米铜的制备、结构及催化性能[j].分子催化,1997,18(3):46?48..

[14]魏胜,王朝阳,黄勇,等.蒸发冷凝法制备纳米al粉及其热反应特性研究[j].原子能科学技术,2002,36(4):367?370..

[15]张立德,纳米材料研究简介[j].物理教学,2001,23(1):2?5.

[16]苏品书,超微粒子材料技术[j].湖北:武汉出版社,1989:56.

[17]王泽红等:caso晶须制备技术及应用研究[j].矿冶,2005,(2),38?41.

[18]戴静等:硼酸盐晶须在复合材料中的应用[j].化工矿物与加工,2005,(10),36?38,.

[19]jiangjie,yushuhong,yaoweitang,etal.morphogenesisandcrystallizationofbi2s3.nanostructuresbyanionicliquid?assistedtemplatingroute:synthesis,formationmechanism,andproperties[j].chem.mater.,2005,17(24):6094?6100..

[20]靳刚:纳米生物技术和纳米医学[j].纳米科技,2005,(3),2?5.

[21]梁勇:纳米微料在医学中的应用[j].中国粉体工业,2005,(3),3?5.

[22]赵荣祥,徐铸德,李赫,等.离子液介质中硫化铋单晶纳米棒制备与表征[j].无机化学学报,2007,23(5):839?843..

[23]刘跃进,李振民,水热法合成云母氧化铁结晶条件[j].化工学报,2004,55(5):20.

[24]张立德,纳米材料与纳米结构[j].北京:化学工业出版社,2000.

[25]顾惕人,朱步瑶等.表面化学[m].北京:科学出版社,1994.

[26]louwenjing,chenmiao,wangxiaobo,etal.novelsingle?sourceprecursorsapproachtopreparehighlyuniformbi2s3andsb2s3nanorodsviaasolvothermaltreatment[j].chem.mater.,2007,19(4):872?878..

[27]liuzhaoping,liangjianbo,lishu,etal.synthesisandgrowthmechanismofbi2s3nanoribbons[j].chem.eur.j.,2004,10(3):634?640..

[28]陈为亮等:化学还原法制备纳米银粉的研究[j].纳米科技,2005,(4),37?40.

[29]张登松,施利毅,纳米材料制备的若干新进展[j].化学工业与工程技术,2003,24(5):32?36.

[30]zhangweixin,yangzeheng,huangxinmin,etal.lowtemperaturegrowthofbismuthsulfidenanorodsbyahydrothermalmethod[j].solidstatecommun.,2001,119(3):143?146..

纳米技术的了解范文篇8

关键词:纳米材料的特性;制备方法;应用

DOI:10.16640/ki.37-1222/t.2016.13.198

1纳米材料的特性

当物体的粒子的直径减小到纳米这一数量级时,能够使一些材料的声、、电、磁、热性等呈现一些新的特性。对纳米体材料的一些特性可以用“更轻、更高、更强”进行概括。

2制备方法

2.1物理制备纳米材料的方法

在早期常将较粗的固体物质进行粉碎,如超声波粉碎法、蒸气快速冷却法、蒸气快速油面法等方法。随着时代的方法近年来出现了一些新的方法,如旋转涂层法,通过控制转速来获得不同空隙的颗粒.然后再在其表面积一层膜,最后经过热处理的方法得到纳米颗粒的阵列。

(1)真空蒸发获得纳米材料。利用电弧高频加热对需要处理的固体材料进行加热,使之形成等离子体,然后对该材料进行骤冷,最后凝结成纳米材料。纳米材料的微粒径可通过改变通入气体的种类或压力等方法进行控制。具体操作过程是将需要蒸发的材料放人柑锅中,先更高程度的真空,然后向里面注人少量的惰性气体,然后再加热,最后蒸发形成纳米微粒。

(2)利用等离子体蒸发凝聚获得纳米材料这种方法是把一种或多种固体颗粒注人到等离子体中,使之蒸发,再通过骤冷装置获得纳米微粒。

2.2化学制备纳米微粒的方法

化学法制纳米材料的方法是通过适当的化学反应,把分子或原子制备成纳米物质,其中包括化学气相沉积(CVD)法、化学气相冷凝法(CVC)等。

(1)化学气相沉积法是目前最广泛的方法,这种方法是在一个加热的衬底上,通过几种气态元素形成纳米材料的过程,这种方法可以可分成热分解反应沉积的方法和化学反应沉积的方法。使用这种方法能均匀的对整个基体进行沉积。缺点是衬底的温度比较高。随着科技的进步,由此产生了许多的新技术,比如等离子体增强化学气相沉积方法及激光诱导化学气相沉积的方法等。

(2)化学气相冷凝法制备纳米材料是通过热解有机高分子获得纳米颗粒。

(3)化学沉淀法的方法是通过在金属盐类的水溶液中适当控制条件使沉淀剂与金属离子进行反应,产生难溶化合物形成沉淀,然后经分离、热分解得到纳米微粒。化学沉淀法有多种如直接沉淀法、共沉淀法等。

2.3物理化学方法制纳米材料

一般在实践情况下是不会只用物理或只用化学方法进行制作纳米材料的,很多是结合了物理和化学两种方法的,主要方法有

(1)热等离子体法是用等离子体将金属等粉末融化后进行蒸发然后再冷凝,从而制成纳米微粒,这种方法是制作金属台金系列纳米微粒比较有效的方法。比如用电弧的方法混合等离子体,它能有效的弥补了传统法存在的一些缺陷,如等离子枪功率小、使用年限比较短和热转化的效率比较低等一些缺点。

(2)利用激光加热蒸气的方法,这种方法是用激光快速加热热源,使反应物分子内部能够很快地吸收能量和传递能量,气体在很短的时间内就能反应的长大和终止.这种方法可以很快生成表面洁净纳米的颗粒。

(3)利用辐射合成法来制作纳米颗粒,这种方法是用用辐射台成法制备纳米材料,它的制备工艺一般是比较简单的,可以在常温常压下进行操作,制备周期时间比较短,生成的粒度比较容易易控制,生成的效率也是较高的,使用这种方法不仅可制备纯度比较高的金属粉末,还可制备各种氧化物纳米粒子以及纳米复台材料,所以纳米材料的辐射法制备近年来得到了很大的发展。

3纳米技术的一些技术应用

(1)纳米材料的用途十分的广泛,比如目前在许多医药领域使用了纳米技术,这样能使药品生产非常的精细,它直接利用原子或者分子的排布制造一些有特殊功能的药品。由于纳米材料所使用的颗粒比较小,所以这种药品在人体内的传输是相当方便的,有些药品会采用多层纳米粒子包裹,这种智能药物到人体后可直接并攻击癌细胞或者对有损伤的组织进行修复。纳米技术也可以用来监测诊少量血液,通过对人体中的蛋白质的分析诊断出许多种疾病。

(2)在家电方面,选用那么材料制成的产品有许多的特性,如具有抗菌性、防腐抗紫外线防老化等的作用。在电子工业方面应用那么材料技术可以从扩大其产品的存储容量,目前是普通材料上千倍级的储器芯片已经投入生产并广泛应用。在计算机方面的应用是可以把电脑缩小成为“掌上电脑”,使电脑使用起来更为方便。在环境保护领域未来将出现多功能纳米膜。这种纳米膜能够对化学或生物制剂造成的污染进行过滤,从而改善环境污染。在纺织工业方面通过在原始材料中添加纳米ZnO等复配粉体材料,再通过经抽丝、织布,最终能够制成除臭或抗紫外线辐射等特殊功能的服装,这些产品可以满足国防工业要求。

(3)最新型的纳米侦察卫星是采用的是纳米元件和按照纳米进行加工方的方法组装而成的,它的质量小于10kg。纳米卫星的体积虽然只有一般比麻雀稍微大一点,但是却拥有非常强大的运算能力,在太空中数十颗甚至数百颗这样的纳米卫星连接在一起就可以织成“天网”,形成纳米卫星侦察系统,能够实现对全球各个地区的覆盖和侦察,在军事上是的应用是非常的重要的,能实现军队对高空无“死区”的侦查。纳米飞行侦察系统属于是一种比较微型化的飞行系统,它能够携带多种探测侦查设备,他们具有非常高的信息处理和导航和通信的能力。该系统的其主要功能是对敌方进行秘密的部署,关键时候可以到敌方信息资源库和相关武器系统的内部或附近地区进行监视敌方的情况,与此同时也可对敌方的各种雷达、通信设备等实施有效监视和干扰。它能够附着在敌方的建筑物或者机械设备上进行监听,有时也可以直接把敌方目标的位置坐标传送到我方发送到我方的炮兵发射基地进行发射导弹,这能够有效地引导精确制导武器进行有效地攻击。当然除了可以放在飞行的纳米飞行器上,还有其它理性的的纳米传感器和侦查设备。他们的体积一般都比较小不容易被发现,内部都装有非常敏锐的传感器。还有一些传感器广泛的分布在一些武器装备的表面,这种传感器叫做环境传感器,它能够察觉比较细微的外部环境的一些“刺激”,用来对武器系统进行调整。潜艇的蒙皮改用纳米材料以后能够灵敏地察觉水流、水压等一些极为细微的外部环境环境的变化,同时及时反馈给潜艇的中央控制系统,实现最低限度地降低噪声,通过对水波的变化的“察觉”能够判断来袭的敌方鱼雷,使潜艇及时有效的进行规避;这能用比较低辐射功率完成“敌我识别,能有效的避免免误伤自己。

(4)纳米材料技术现在已广泛应用于遗传育种中,该技术能够结合转基因技术并且已经在培育新品种方面取得了很大的进展。这种技术是通过纳米手段将染色体分解为单个的基因,然后对它们进行组装,这种技术整合成的基因产品的成功率几乎可以达到100%。经过实践证明,科研人员能够让单个的基因分子链展现精细的结构,并可以通过具体的操纵其实现分子结构改变其性能,从而形成纳米图形,这样就能使人们可以在更小的世界范围内、更加深的一种层次上进行探索生命的秘密。

(5)纳米材料技术在发动机尾气处理方面的应用,目前有一种新型的纳米级净水剂有非常强的吸附能力,它是一般净水剂的20倍左右。纳米材料的过滤装置,还能有效的去除水中的一些细菌,使矿物质以及一些微量元素有效的保留下来,经过处理后的污水可以直接饮用。纳米材料技术的为解决大气污染方面的问题提供了新的途径。这种技术对空气中的污染物的净化的能力是其它技术所不可替代的。

现在我国已经建立十多条的纳米材料和技术的生产线。纳米复合材料、纤维的改性、纳米材料在能源和环保等方面的应用与开发已在我国兴起。国内纳米技术注册的公司已经近百个,一些知名的企业家对纳米技术的关注,已经为我国纳米技术产业注入了新的活力。相信在不久将来,纳米材料技术将会应用很快的应用于我国的船舶行业。

4结语

目前世界上的的纳米物质和产品的种类非常的多,制作方法上也是五花八门,但总体上看还很不完整.从纳米材料的发展角度看,需要开发一些比较简单的,能够大规模进行生产的方法.从对纳米颗粒的基础来看,需要开发能够进行严格控制其微粒尺寸的制备方法.这些工作的进展将有助于以后更好的开发纳米材料的用途,从而创立新的电子学材料、光学材料、传感器等。

参考文献:

[1]曹茂盛.纳米材料导论[M]纳米材料应用,2014(6)

纳米技术的了解范文篇9

[关键词]纳米二氧化钛光催化氧化

中图分类号:X703文献标识码:A文章编号:1009-914X(2015)18-0128-01

1前言

水资源的严重污染和匮乏是困扰当今世界经济发展,人类生存的重大国际性问题,尤其是难降解有毒有害废水的处理一直来制约着我国精细化工、制药、造纸、印染等行业的快速发展,研究开发新的高效治理难降解有毒有害废水的技术是我国科技工作者面临的紧迫任务。

光催化氧化技术是在二十世纪八十年代后期开始运用于环境污染控制领域的。其中纳米TiO2光催化氧化技术因其可利用太阳能、能耗低、操作简单、反应条件温和、使用条件少、极少产生二次污染等突出有点而成为当今环保科技工作者的研究热点。

2.1光催化氧化技术概述

所谓光化学反应,就是在光的作用下进行的化学反应。光化学反应需要分子吸收特定波长的电磁辐射,受激产生分子激发态,之后才会发生化学变化到一个稳定的状态,或者变成引发热反应的中间化学产物。光化学反应的活化能来源于光子的能量,在太阳能的利用中,光电转换以及光化学转换一直是十分活跃的研究领域。1972年Fujishima和Honda发现光照的TiO2单晶电极能分解水,引起人们对光诱导氧化还原反应的兴趣,由此推进了有机物和无机物光氧化还原反应的研究。

2.2二氧化钛光催化氧化机理和特点

纳米Ti02材料光催化氧化技术应用在处理有毒、难生物降解废水中,是基于纳米材料的巨大的比表面积和表面自由能原理。其原理是,在紫外光照射下,纳米Ti02表面会产生氧化能力极强的羟基自由基(HO・),使水中的有机污染物氧化降解为无害的CO2和水。纳米TiO2光催化氧化技术的优点是:(1)降解速度快;(2)降解无选择性;(3)氧化反应条件温和,投资少,能耗低,用紫外光照射或阳光下即可发生光催化氧化反应;(4)无二次污染,有机物彻底被氧化降解为CO2和H2O;。

2.3纳米材料的特点

广义上,纳米材料是指在三维空间中,至少有一维达到纳米尺度范围或以它们为基本单元所构成的材料。首届国际纳米科技大会上宣告了纳米技术的诞生,并由此出现了纳米电子学、纳米化学、纳米材料、纳米生物学等纳米科技群。由于该技术研究的对象在纳米的尺度下,具有十分显著的量子尺寸效应,使得纳米体系出现了与常规材料不同的机械、光、热、电、磁等物理性质。纳米颗粒的粒径极小,具有巨大的比表面积和表面自由能。纳米技术的发展和应用将会给环境污染治理、工业水处理技术的发展开创新的领域。

2.4纳米TiO2的特点及功能

在近几年中,二氧化钛作为一种很在运用前景的环保材料,人们对其进行了广泛的研究。这主要是因为它有很好的光催化活性。大量的研究表明,二氧化钛独有水中光降解功能,可以降解水中的有毒成分,如苯酚类,除草剂,杀虫剂,染料和表面活性剂等等。然而,在二氧化钛粉光催化过程的实际运用中,存在一些缺陷:(1)从水中分离出二氧化钛十分困难;(2)悬浮的二氧化钛容易产生聚合,特别是在浓度较高时更易发生。因此许多学者致力于研究固定二氧化钛从而克服这些缺陷。

2.5纳米TiO2在水处理中的应用探索研究与前景

纳米TiO2光催化氧化技术在彻底降解水中的有机污染物和可以利用太阳能等方面有着突出的优点。近年来,高效率的光催化剂、纳米粒子负载和金属掺杂、光电结合的催化方法以及太阳能技术的研究开发,使纳米TiO2光催化氧化应用于水处理领域有着良好的应用前景。

2.5.1有机磷农药废水

目前对有机磷农药废水的处理多用生化法,处理后废水中有机磷的质量浓度仍然高达30mg/L,迄今尚无理想的解决办法。据文献[4]报道,采用纳米TiO2、SiO2负载复合光催化刘,利用其光催化活性及高效吸附性,能使有机磷农药在其表面迅速富集,随光照时间的延长,有机磷农药的光解率逐渐升高,光照80min实验,可使敌百虫完全降解。

2.5.2处理毛纺染整废水

把表面涂覆有纳米TiO2膜的玻璃填料填充于玻璃反应器内,通过潜水泵使废水在反应器内循环进行光催化氧化处理。由于纳米TiO2具有巨大的比表面积,与废水中的有机物接触更为充分,可将它们最大限度地吸附在其表面,并迅速将有机物分解成CO2和H20,处理效果优于生物处理和悬浮光催化氧化处理,COD去除率和脱色率均较高。催化剂能连续使用,不需要分离回收,便于工业应用。

2.5.3氯代有机物废水

日本东京大学野口真用纳米TiO2光催化剂与臭氧联合进行水的净化处理。在模拟废水处理的实验中,以质量浓度为16mg/L的3―氯酚的水溶液为模拟废水,分别采用纳米TiO2光催化剂与臭氧联合,单独用光催化剂纳米TiO2和单独用O3三种方法对其进行处理。纳米TiO2光催化剂与臭氧联合处理2h后,3―氯酚的残留质量浓度已为0,效果明显高于其他两种方法。用内表面涂覆纳米TiO2光催化刘的陶瓷圆管处理质量浓度为5.5mg/L苯酚和三氯乙烯水溶液的实验表明,苯酚在1.5h后完全分解,三氯乙烯也在2h内完全分解。

2.5.4含油废水

含油废水中所含的脂肪烃、多环芳烃、有机酸类、酚类等有机物很难降解,使用纳米TiO2利用其光催化降解功能,可以迅速的降解这些有机物。

2.6目前所取得的成就

吴海宝[2]等采用开放式悬浮相光催化反应器,以太阳光激发染料污水悬浮中的TiO2产生・OH自由基将染料氧化脱色。实验结果表明:经过2h太阳光照射后,阳离子蓝X―GRRL染料脱色率在80%~93%之间。Kikuchi[3]利用TiO2为光催化剂将硒酸钠还原为硒化氢。在实验中,以含100×101mol/L硒的硒酸钠溶液为处理对象,在该体系中加入0.10~0.11gTiO2粉末及2.5mol甲酸,光照1h后硒的含量降低到0.02~0.04×10mol/L。李晓红[4]等采用TiO2/Sn02为复合光催化剂,对敌敌畏进行光催化降解研究。结果表明,包覆型的TiO2/Sn02光催化活性得到明显提高。崔玉民[5]等先后采用WO3/a-Fe203/W、WO3/CdS/W、W03/a-Fe203/W、Bi203为悬浮相光催化剂分别对含硫化物的废水、印染废水、造纸废水、含亚硝酸盐废水处理进行了研究,经过处理后的废水达到国家排放标准。

参考文献

[1]吴海宝.Ti02光催化降解染料废水的研究[J]中国环境科学,1997,17(1):93.

[2]KikuchiE,MagriniW.Improvingcatalystperformanceforthesolar―basedphotocatalyticreducingNa2Se04[J].ShigentoKankyo,1997,6(2):173.

[3]李晓红,颜秀茹,张月萍,等.Ti02/Sn02复合光催化剂的制备及光催化降解敌敌畏[J].应用化学,2001,18(1):32.

纳米技术的了解范文

摘要:纳米技术为人类带来的便利:纳米技术的发展,不仅可以在治理环境污染方面起到很好的作用,对于有害气体,污水处理,而且对于磁辐射,废弃物等治理方面起到了很大的作用,但是随着纳米技术的逐步发展,人类一味的对技术产生依赖心理,在这种情况下我们要用自己的判断力,增加自己的基本素养,具备独立思维的能力,合理的运用科技的发展为人类服务。

关键词:纳米技术污水处理依赖技术基本素养

中图分类号:N031文献标识码:A文章编号:1006-026X(2013)10-0000-02

1.纳米技术的定义

纳米技术是一种创新的技术,它在非常小的范围之内之内,来进行对原子,分子的研究,并利用其来进行发展和创新的一门技术,纳米机器人,纳米马桶,人类通过电子显微镜看到的微观的人体细胞,病毒等等。利用纳米技术制作的材料又与我们经常使用的材料有很大的区别,它发展了吸附等的一系列功能。那么这种新型材料的出现,也将会利用到人类生活的各个方面,带来了技术创新。

2.纳米技术为人类带来的便利

纳米技术的发展为科学技术的发展带动了新的改革,纳米技术的发展也推动了医学、艺术等方面的发展。医学中产生了光学传感设备,对于骨质修复作用产生了重要的作用,同时纳米技术在药物输送方面产生了重要作用,纳米技术在艺术层面也产生了重要的影响,纳米画等作品。纳米技术不仅从技术层面关心人类,而且从人的综合状态中予以提升。

2.1纳米技术带来了科技层面的改革

例如,纳米技术制作的微型器械,按照人类的操作任意运动,将微小的颗粒,划分成原子或者分子,再按照自己的想法任意拼接,这些器械不仅可以按照人类的想法任意工作,而且具有自我还原的能力。纳米材料是一种新型的材料,这也体现了从认识―实践―认识的客观规律。人类之所以能制作出纳米仪器,利用纳米材料的主要原因是人类对于纳米世界认识的比较深入全面,然后再利用纳米材料制作出纳米设备,这也是令一个再认识―实践―认识的过程,推动了从不断认识到实践的过程,体现出了发展是靠不断运动的哲学道理。

2.2纳米技术体现了物质和意识的关系

物质决定意识,意识对物质有反作用。人类推动了纳米材料的发展,最主要的原因在于人类对纳米世界有了非常客观的认识,了解了它的运动发展规律,通过人类对于纳米世界的学习和研究,来创造出纳米材料,而这种材料的创造体现了物质决定意识,意识对物质起到了发作用。

2.3纳米技术同时体现了由量变到质变的一个过程

物质的质变有两种来源,一种形式是量变达到一定程度就会产生质变,质变的另一种形式就是在总量不变的前提下,内部组织自己行的排列与组合,从而产生质变,纳米技术一方面是利用纳米结构的特点而生产的一种纳米材料,另一种就是利用原子,分子中间的距离变化,重新组合,而产生的质变生产的纳米材料,这就体现了由量变到质变的过程,

2.4纳米技术加强了人们对于排列结构的认识

原子,或分子之间的距离,位置不同就会形成新的不同的物质,纳米技术也就是利用了这一特点,而形成的技术。纳米技术完成了从生物到非生物的跨越,在医学上生产出新的微型仪器,置放在人体中代替,或者弥补人体某些部分脏器的功能,通过改变人体细胞的组织结构,利用纳米技术孕育出新的生命,

3.纳米技术带来的消极影响

纳米就会造成人类社会的危害,人类的想象和发明没有边界,纳米技术的产生就是对原子分子进行重新的排列组合,在这种非常方便的状况下,纳米技术也会生产出任何东西,这是一件可怕的事情,在这种没有节制的的状态下,纳米技术就像病毒一样无限蔓延开来,可以想象一下,我们周围到处存在着纳米仪器,有有利于人类发展的仪器设备,医药用品,也有限制人类发展的纳米病毒,学生利用纳米仪器来应付考试,小偷利用纳米仪器进行偷窃,人人都有纳米设备防身,这是一件多么可怕的事情。

人类如果过度依赖技术,就会将人类和技术之间的关系发生改变,不是技术为人类服务,而是人类对技术的崇拜,人的思想会随着发生改变,产生混乱和偏执,基本理论的缺失。

技术会导致人缺乏用自己的思维,一味的对技术产生依赖心理。有些观点认为纳米技术可以解决任何问题,此观点认为,所有的物质存在方式都是按照自己的规律存在的,万事万物的存在都有自己的规则,相互之间也有自己的的特点,遵循着某种法则,依照纳米技术的原理,人类社会的存在方式也可以任意组合,相互之间可以打乱,再进行新的排列组合,有的观点认为,人的思维,与任何一种社会存在进行排列组合,所有的存在都可以依照纳米技术的存在方式来进行发展,有机界和无机界,非生物和生物,任何物种都可以排列组合,有些组合还没有实现,得依据纳米技术的发展状况,需要进一步学习研究。更有甚者认为人的思维是由大脑控制的,为了改变人的思维方式完全可以像纳米技术那样,将人的大脑细胞与大脑结构重新进行排列组合,这种思想是非常可怕的。

依照这种推论,我们要想让刚种的树苗,瞬间长大,完全可以改变它内部细胞生长结构,要想让刚出生的婴儿长大,改变他的细胞排列结构,要想让养的家禽快速长大,只要改变体内细胞的排列结构,这是一件多么可怕的事情,况且这种言论还没有成立,纳米技术的无限制发展就会对人类社会带来危害,使人的思维发生错乱,

这也是一种拜物的想法,一味的抬高技术的发展,而降低了人的主观能动性,人服务于技术,技术是最高的物质,失去了人在社会中的主导地位,虽然这样的想法没有办法去证明它的合理性,但也很难证明它的不合理性,但是能够确定的是,如果按照这种状况发展下去,人类社会的发展将会被阻挠。

4.面对纳米技术的优劣是该如何解决

根据纳米技术的发展而产生的一些消极理论,我们必须做一些考虑,针对性的提出一些意见,来限制其肆意发展。阻止其危害人类社会。纳米技术的发展一方面促进了人类社会的发展,为人类的医学,艺术,技术各个方面提供了积极地影响,而另一方面纳米技术的肆意发展又导致了人的异化,对人类社会的发展产生了阻碍,这种现象也是不可避免的,事物的发展总是存在这两面的,如果利大于弊,它就是正面的,可继续发展的,如果弊大于利,就要引起人们的反思,那么从纳米技术的发展状况来看,它更多地是造福人类,但是在它为人类带来方便的同时又对社会的发展产生了阻碍。对于这一利大于弊的现状,针对于它的利弊我们一方面要改变人的观念发扬正面的力量;另一方面,应该采取一些相关的政策措施,针对性的阻碍它的负面影响。

4.1改变人们的观念发扬正面力量

在科技不断发展的今天,从人的本身开始,从知识文化层面,提高人本身的素养,对科学技术重新认识,树立科学的文化精神。只有这样,当新的的技术出现时,就不会出现违背科学文化而出现的不合于人的伦理道德的事情,人类尊重科学知识,但不盲目崇拜,对科学技术的态度,要合理保护。只有这种科学知识观念扎根在人的脑海中,任何消极的观念都不会滋生,另一方面,科学技术的发展的最要的目的,是以为人类共同利益而服务的,我们应该分出什么任务是共同的,这就需要对人类自身修养的提高与丰富,当面对共同利益时,联合起来,共同发展,当科学技术不符合人的共同利益时,人的自我修养自我意识,就可以提醒自己,科学技术的发展危害到人的共同利益时,要知道杜绝其发展,人的思想也是一步一步完善起来的,科学技术也在发展的阶段,虽然人类很难预测科技发展的后果,但由于人类有基本的科学素养,基本的科学文化,人类在面临科学发展的时候,最基本要做到的是科学技术的发展要与人类社会的发展,相互协调。

科学技术是一种被人类用来创造的东西,是人类达到某种目的的手段或者媒介,是人类可以掌控的东西,在这个时候就对创造者有要求,创作发明者本着为人类共同利益的原则,选择性的发展科学技术哲学,纳米技术也一样,当它符合人的共同利益的时候我们大力发展,当它没有边界肆意发展,为社会的发展总成阻碍,危害人类的共同利益,违反公共道德,反人类的基本素养,创造者就要摒弃它,限制其发展,当然在不同的年代,各个国家对于科学技术发展,纳米技术的发展的衡量标准是不一样的,在这个时候,首先纳米技术的发展要符合当时,符合国家的需求,符合人们的共同利益,不能超越人类的道德底线,不同年代,不同国家的国情,科学技术的发展,要和当时国家的人们素质,国庆的发展相互协调,整体性推动人类发展的历史进程。始终不能违反人类的共同需求,和人性发展的基本素质的本质要求。

4.2纳米技术的发展应从政治、教育、法律等方面来约束和规范

从政治方面国家应该出抬相应的政策引导纳米技术的发展朝向符合国家利益,人民根本利益的方向发展,明确规定杜绝哪些科学技术的发展。最大化的实现人民根本利益的。要杜绝不良技术的发展滋生,不仅仅要依靠政策的导向,严重的情节要依靠法律的武器,彻底消灭不符合人类发展规律的科技发展,有些人为了自己私利,不顾人类发展的根本利益,利用科学技术,发展生产一些危害人类的利益,危害社会健康的一些科技,在这种情况之下,国家的法律应该做出明确的规定,对于这类,危害人类,危害社会发展的行为,予以法律的制裁。目前我们的国家正处于发展中的阶段,以上说的政策导向。和法律法规还需要一个发展过程,科学技术,尤其是纳米技术的发展是一个新型的事物,人类对它的了解是一个非常模糊的状态,所以难免会造成一些违背大众基本文化原则的事情,所以人类要树立这种科技发展的文化观,在每朝每代,社会舆论,难免是人类发展的一个催化剂,我们应该树立正确的舆论导向,人人心里树立正确的和意识,引导科学技术从正确的方向发展,当科学技术,违背大众舆论的时候,人类要积极站出来,对不良的发展想象造成压力,时刻朝向正确健康的方向发展。

结语:纳米技术是一种新型的科学技术,是科技发展的一场革命,它将人类带进了另一个新的先进的世界,它的发展造福了大众,另一个新的光明的世界已经到来,任何事物的发展都有双层的利害关系,纳米技术的发展也如此,人类不能被异化,要树立对科学技术发展的认识和基本素养,并通过政治、文化、法律等一列的约束和导向,使科学技术朝正确的方向发展,造福人类。

参考文献:

[1]阵垮泉.纳米科技探索[M].北京:清华大学出版社,2002.

[2]孙超.纳米技术带来的哲学思考[J].安徽农业大学学报(社会科学版):2002(61)

[3]郝春城等.纳米科技及纳米材料发展的哲学思考[J].青岛化工学院学报(社会科学版):1999(3)1.

[4]吴文新.科学技术应成为上帝吗?[J].自然辩证法研究:2000(11).

[5]王秀丽,王德胜.纳米技术的哲学价值[J].自然辩证法研究:2006,22(4)61-64.

纳米技术的了解范文篇11

关键词:纳米光催化技术;大气污染;治理应用

纳米光催化技术在大气污染中的应用,可以提高大气污染的治理水平。由于纳米光催化技术的光敏效果较好,容易达到其反应条件,效率高,对环境及人体具有无害的特点,所以,纳米光催化技术已成为当前社会最先进的空气净化技术。对纳米光催化技术进行分析与研究,充分了解其在大气污染治理中的应用,有利于解决我国严重的雾霾问题,优化人们的生活环境,促进经济的快速发展。

一、纳米光催化技术理论

太阳能作为“取之不尽,用之不竭”的清洁能源之一,在能源短缺和环境污染日趋严重的今天,其有效利用显得尤为重要。而光催化污染物降解技术既能充分利用太阳能,又能解决大气污染物的处理难题。纳米光催化技术作为一种新型的大气污染物治理方法,在大气污染控制方面具有巨大的应用潜力。与传统的物理吸附法(活性炭)相比,利用纳米光催化技术净化空气具有以下优势:催化降解反应可以在常温常压下进行;操作简便;在太阳光的激发下,能有效去除大气中的污染物如NOx和VOCs,不会造成二次污染。

光催化技术理论主要基于“Fu-jishima-Honda”效应,20世纪70年代后期,Frank和Bard关于水中氰化物在TiO2表面的光分解研究及Carey等关于多氯联苯在TiO2紫外光下的降解研究,极大推动了光催化技术在环境污染治理方面的研究。半导体材料的催化氧化机理如下:当能量大于禁带宽度的光照射半导体催化剂时,价带(va-lenceband,VB)上的电子被激发,跃过禁带进入导带(conductionband,CB),而在价带上产生与电子()对应的空穴(),即产生自由电子-空穴对,活泼的电子、空穴在电场作用下可以分别从半导体的导带、价带迁移至半导体/吸附物界面,而且跃过界面,使被吸附物还原和氧化;同时也存在着电子、空穴的复合。价带空穴()将吸附的H2O氧化为羟基自由基(),导带电子()将空气中的O2还原为超氧自由基()。这两个自由基(),是降解污染物的关键活性基团。其反应原理如下:

二、纳米光催化技术的实际应用

纳米光催化技术在大气污染治理中的应用比较广泛,TiO2作为应用效果较好的光催化剂,具有较好的抗酸碱性、耐光腐蚀性,其化学性质稳定性较好,来源丰富,能源较大,具有产生的光生电子和空穴的电势电位较高等优势。但是,在实际的纳米光催化技术应用过程中,容易受到催化剂、有机物浓度的影响。因此,在大气污染治理过程中,相关人员应重视这些因素对光催化技术的影响。

(一)催化剂对纳米光催化技术的影响。纳米光催化技术的原理,是利用催化剂净化大气的。在反应过程中,催化剂的表面积、粒径等等,都会影响纳米光催化反应。如:当催化剂的粒径不断缩小时,溶液中的单位质量粒子就会增多,虽然光的吸附效率有所增加,但是,光吸收不易饱和;当催化剂系统的表面积增加时,就意味着催化剂参加反应的面积增大,有利于催化反应的进行,反之,则不利于催化反应的进行。另外,催化剂的表面羟基及混晶效应,也是影响纳米光催化反应的另一因素。

(二)光源与光强对大气污染的影响。纳米光催化技术常用的光源有黑光灯、高低压汞灯、紫外灯、杀菌灯等,波长在200-400nm的范围内。一般情况下,在纳米光催化反应过程中,其光的强度越强,催化反應速度就会逐渐趋于常数,但是,光量子效率则会随着光强度的变化而变化。此外,PH值不同,外加助催化剂及无机盐等等,在一定程度上也会影响纳米光催化技术的反应。

三、纳米光催化大气污染控制技术与其他技术的联用

(一)室内污染控制与通风技术。目前常用室内环境净化与通风技术有主动式和被动式2种。前者是将室内环境净化装置与机械通风系统有机结合起来成为一个整体,而后者采用空气净化过滤器结合自然通风系统。这两种技术均涉及高效通风技术,前者主要针对外源性污染,可采用高效低阻过滤的方式;而后者主要针对内源式污染,比较有效的方式为各种室内净化技术。目前主要通风方式包括混合通风、置换通风和个性化送风。混合通风和置换通风均以营造室内可感风环境为目的,若将空调设定温度调高必然会引起室内人员热舒适性的降低;个性化送风由于其实际使用中制约较多,在实际工程中较少。

(二)过滤技术。过滤技术主要包括纳米纤维过滤技术、光催化纤维过滤技术、膜过滤技术。纳米纤维过滤技术具有一定梯度结构的复合过滤材料可大大提高过滤性能,已用于室内空气净化、水体有机物净化等领域,有望实现大规模工程化应用;纳米光催化技术是一种新型的处理大气污染物的方法,在大气污染控制方面具有巨大的应用潜力。

四、结语

在大气污染治理过程中,单独利用纳米光催化技术的效果并不是特别明显,因此,在治理大气污染过程中,相关人员应将纳米光催化技术与其他先进的大气净化技术进行有效结合,提高大气污染治理效果,保证人们生活健康。

参考文献:

[1]曹军骥,黄宇.纳米光催化技术在大气污染治理中的应用[J].科技导报,2016,17:64-71.

纳米技术的了解范文篇12

关键词:纳米科学纳米技术纳米管纳米线纳米团簇半导体

NanoscienceandNanotechnology–theSecondRevolution

Abstract:Thefirstrevolutionofnanosciencetookplaceinthepast10years.Inthisperiod,researchersinChina,HongKongandworldwidehavedemonstratedtheabilitytofabricatelargequantitiesofnanotubes,nanowiresandnanoclustersofdifferentmaterials,usingeitherthe“build-up”or“build-down”approach.Theseeffortshaveshownthatifnanostructurescanbefabricatedinexpensively,therearemanyrewardstobereaped.Structuressmallerthan20nmexhibitnon-classicalpropertiesandtheyofferthebasisforentirelydifferentthinkinginmakingdevicesandhowdevicesfunction.Theabilitytofabricatestructureswithdimensionlessthan70nmallowthecontinuationofminiaturizationofdevicesinthesemiconductorindustry.Thesecondnanoscienceandnantechnologyrevolutionwilllikelytakeplaceinthenext10years.Inthisnewperiod,scientistsandengineerswillneedtoshowthatthepotentialandpromiseofnanostructurescanberealized.Therealizationisthefabricationofpracticaldeviceswithgoodcontrolinsize,composition,orderandpuritysothatsuchdeviceswilldeliverthepromisedfunctions.Weshalldiscusssomedifficultiesandchallengesfacedinthisnewperiod.Anumberofalternativeapproacheswillbediscussed.Weshallalsodiscusssomeoftherewardsifthesedifficultiescanbeovercome.

Keywords:Nanoscience,Nanotechnology,Nanotubes,Nanowires,Nanoclusters,“build-up”,“build-down”,Semiconductor

I.引言

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。例如,美国政府2001财政年度在纳米尺度科学上的投入要比2000财政年增长83%,达到5亿美金。有两个主要的理由导致人们对纳米尺度结构和器件的兴趣的增加。第一个理由是,纳米结构(尺度小于20纳米)足够小以至于量子力学效应占主导地位,这导致非经典的行为,譬如,量子限制效应和分立化的能态、库仑阻塞以及单电子邃穿等。这些现象除引起人们对基础物理的兴趣外,亦给我们带来全新的器件制备和功能实现的想法和观念,例如,单电子输运器件和量子点激光器等。第二个理由是,在半导体工业有器件持续微型化的趋势。根据“国际半导体技术路向(2001)“杂志,2005年前动态随机存取存储器(DRAM)和微处理器(MPU)的特征尺寸预期降到80纳米,而MPU中器件的栅长更是预期降到45纳米。然而,到2003年在MPU制造中一些不知其解的问题预期就会出现。到2005年类似的问题将预期出现在DRAM的制造过程中。半导体器件特征尺寸的深度缩小不仅要求新型光刻技术保证能使尺度刻的更小,而且要求全新的器件设计和制造方案,因为当MOS器件的尺寸缩小到一定程度时基础物理极限就会达到。随着传统器件尺寸的进一步缩小,量子效应比如载流子邃穿会造成器件漏电流的增加,这是我们不想要的但却是不可避免的。因此,解决方案将会是制造基于量子效应操作机制的新型器件,以便小物理尺寸对器件功能是有益且必要的而不是有害的。如果我们能够制造纳米尺度的器件,我们肯定会获益良多。譬如,在电子学上,单电子输运器件如单电子晶体管、旋转栅门管以及电子泵给我们带来诸多的微尺度好处,他们仅仅通过数个而非以往的成千上万的电子来运作,这导致超低的能量消耗,在功率耗散上也显著减弱,以及带来快得多的开关速度。在光电子学上,量子点激光器展现出低阈值电流密度、弱阈值电流温度依赖以及大的微分增益等优点,其中大微分增益可以产生大的调制带宽。在传感器件应用上,纳米传感器和纳米探测器能够测量极其微量的化学和生物分子,而且开启了细胞内探测的可能性,这将导致生物医学上迷你型的侵入诊断技术出现。纳米尺度量子点的其他器件应用,比如,铁磁量子点磁记忆器件、量子点自旋过滤器及自旋记忆器等,也已经被提出,可以肯定这些应用会给我们带来许多潜在的好处。总而言之,无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

II.纳米结构的制备———首次浪潮

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等)。“build-up“的优点是个体纳米部件的制备成本低以及工艺简单快捷。有多种方法如气相合成以及胶体化学合成可以用来制备纳米元件。目前,在国内、在香港以及在世界上许多的实验室里这些方法正在被用来合成不同材料的纳米线、纳米管以及纳米团簇。这些努力已经证明了这些方法的有效性。这些合成方法的主要缺点是材料纯洁度较差、材料成份难以控制以及相当大的尺寸和形状的分布。此外,这些纳米结构的合成后工艺再加工相当困难。特别是,如何整理和筛选有着窄尺寸分布的纳米元件是一个至关重要的问题,这一问题迄今仍未有解决。尽管存在如上的困难和问题,“build-up“依然是一种能合成大量纳米团簇以及纳米线、纳米管的有效且简单的方法。可是这些合成的纳米结构直到目前为止仍然难以有什么实际应用,这是因为它们缺乏实用所苛求的尺寸、组份以及材料纯度方面的要求。而且,因为同样的原因用这种方法合成的纳米结构的功能性质相当差。不过上述方法似乎适宜用来制造传感器件以及生物和化学探测器,原因是垂直于衬底生长的纳米结构适合此类的应用要求。

“Build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(MBE)、化学气相淀积(MOVCD)等来进行器件制造的传统方法。“Build-down”方法的缺点是较高的成本。在“build-down”方法中有几条不同的技术路径来制造纳米结构。最简单的一种,也是最早使用的一种是直接在衬底上刻蚀结构来得到量子点或者量子线。另外一种是包括用离子注入来形成纳米结构。这两种技术都要求使用开有小尺寸窗口的光刻版。第三种技术是通过自组装机制来制造量子点结构。自组装方法是在晶格失配的材料中自然生长纳米尺度的岛。在Stranski-Krastanov生长模式中,当材料生长到一定厚度后,二维的逐层生长将转换成三维的岛状生长,这时量子点就会生成。业已证明基于自组装量子点的激光器件具有比量子阱激光器更好的性能。量子点器件的饱和材料增益要比相应的量子阱器件大50倍,微分增益也要高3个量级。阈值电流密度低于100A/cm2、室温输出功率在瓦特量级(典型的量子阱基激光器的输出功率是5-50mW)的连续波量子点激光器也已经报道。无论是何种材料系统,量子点激光器件都预期具有低阈值电流密度,这预示目前还要求在大阈值电流条件下才能激射的宽带系材料如III组氮化物基激光器还有很大的显著改善其性能的空间。目前这类器件的性能已经接近或达到商业化器件所要求的指标,预期量子点基的此类材料激光器将很快在市场上出现。量子点基光电子器件的进一步改善主要取决于量子点几何结构的优化。虽然在生长条件上如衬底温度、生长元素的分气压等的变化能够在一定程度上控制点的尺寸和密度,自组装量子点还是典型底表现出在大小、密度及位置上的随机变化,其中仅仅是密度可以粗糙地控制。自组装量子点在尺寸上的涨落导致它们的光发射的非均匀展宽,因此减弱了使用零维体系制作器件所期望的优点。由于量子点尺寸的统计涨落和位置的随机变化,一层含有自组装量子点材料的光致发光谱典型地很宽。在竖直叠立的多层量子点结构中这种谱展宽效应可以被减弱。如果隔离层足够薄,竖直叠立的多层量子点可典型地展现出竖直对准排列,这可以有效地改善量子点的均匀性。然而,当隔离层薄的时候,在一列量子点中存在载流子的耦合,这将失去因使用零维系统而带来的优点。怎样优化量子点的尺寸和隔离层的厚度以便既能获得好均匀性的量子点又同时保持载流子能够限制在量子点的个体中对于获得器件的良好性能是至关重要的。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

在未来的十年中,纳米科学和技术的第二次浪潮很可能发生。在这个新的时期,科学家和工程师需要征明纳米结构的潜能以及期望功能能够得到兑现。只有获得在尺寸、成份、位序以及材料纯度上良好可控能力并成功地制造出实用器件才能实现人们对纳米器件所期望的功能。因此,纳米科学的下次浪潮的关键点是纳米结构的人为可控性。

III.纳米结构尺寸、成份、位序以及密度的控制——第二次浪潮

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于GaN材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

—电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。在电子束光刻中的电子散射因为所谓近邻干扰效应(proximityeffect)而严重影响了光刻的极限精度,这个效应造成制备空间上紧邻的纳米结构的困难。这项技术的主要缺点是相当费时。例如,刻写一张4英寸的硅片需要时间1小时,这不适宜于大规模工业生产。电子束投影系统如SCALPEL(scatteringwithangularlimitationprojectionelectronlithography)正在发展之中以便使这项技术较适于用于规模生产。目前,耗时和近邻干扰效应这两个问题还没有得到解决。

—聚焦离子束光刻是一种机制上类似于电子束光刻的技术。但不同于电子束光刻的是这种技术并不受在光刻胶中的离子散射以及从衬底来的离子背散射影响。它能刻出特征尺寸细到6纳米的图形,但它也是一种耗时的技术,而且高能离子束可能造成衬底损伤。

—扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。此项技术已经用来刻划金属(Ti和Cr)、半导体(Si和GaAs)以及绝缘材料(Si3N4和silohexanes),还用在LB膜和自聚集分子单膜上。此种方法具有可逆和简单易行等优点。引入的氧化图形依赖于实验条件如扫描速度、样片偏压以及环境湿度等。空间分辨率受限于针尖尺寸和形状(虽然氧化区域典型地小于针尖尺寸)。这项技术已用于制造有序的量子点阵列和单电子晶体管。这项技术的主要缺点是处理速度慢(典型的刻写速度为1mm/s量级)。然而,最近在原子力显微术上的技术进展—使用悬臂樑阵列已将扫描速度提高到4mm/s。此项技术的显著优点是它的杰出的分辨率和能产生任意几何形状的图形能力。但是,是否在刻写速度上的改善能使它适用于除制造光刻版和原型器件之外的其他目的还有待于观察。直到目前为止,它是一项能操控单个原子和分子的唯一技术。

—多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。铝膜在酸性腐蚀液中阳极氧化就可以在铝膜上产生六角密堆的空洞,空洞的尺寸可以控制在5-200nm范围。制备多孔膜的其他方法是从纳米沟道玻璃膜复制。用这项技术已制造出含有细至40nm的空洞的钨、钼、铂以及金膜。

—倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。目前,经过反应离子刻蚀后,在旋转涂敷的倍塞共聚物层中产生的图形已被成功地转移到Si3N4膜上,图形中空洞直径20nm,空洞之间间距40nm。在聚苯乙烯基体中的自组织形成的聚异戊二烯(polyisoprene)或聚丁二烯(polybutadiene)球(或者柱体)可以被臭氧去掉或者通过锇染色而保留下来。在第一种情况,空洞能够在氮化硅上产生;在第二种情况,岛状结构能够产生。目前利用倍塞共聚物光刻技术已制造出GaAs纳米结构,结构的侧向特征尺寸约为23nm,密度高达1011/cm2。

—与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。各种尺寸的聚合物球珠是商业化的产品。然而,要制作出含有良好有序的小尺寸球珠薄膜也是比较困难的。用球珠单层膜已能制备出特征尺寸约为球珠直径1/5的三角形图形。双层膜纳米球珠掩膜版也已被制作出。能够在金属、半导体以及绝缘体衬底上使用纳米球珠光刻术的能力已得到确认。纳米球珠光刻术(纳米球珠膜的旋转涂敷结合反应离子刻蚀)已被用来在一些半导体表面上制造空洞和柱状体纳米结构。

—将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。其中微接触印刷法已被证明只能用来刻制特征尺寸大于100nm的图形。复制铸模法的可能优点是ellastometric聚合物可被用来制作成一个戳子,以便可用同一个戳子通过对戳子的机械加压能够制作不同侧向尺寸的图形。在溶剂辅助铸模法和用硬模版浮雕法(或通常称之为纳米压印术)之间的主要差异是,前者中溶剂被用于软化聚合物,而后者中软化聚合物依靠的是温度变化。溶剂辅助铸模法的可能优点是不需要加热。纳米压印术已被证明可用来制作具有容量达400Gb/in2的纳米激光光盘,在6英寸硅片上刻制亚100nm分辨的图形,刻制10nmX40nm面积的长方形,以及在4英寸硅片上进行图形刻制。除传统的平面纳米压印光刻法之外,滚轴型纳米压印光刻法也已被提出。在此类技术中温度被发现是一个关键因素。此外,应该选用具有较低的玻璃化转变温度的聚合物。为了取得高产,下列因素要解决:

1)大的戳子尺寸

2)高图形密度戳子

3)低穿刺(lowsticking)

4)压印温度和压力的优化

5)长戳子寿命。

具有低穿刺率的大尺寸戳子已经被制作出来。已有少量研究工作在试图优化压印温度和压力,但显然需要进行更多的研究工作才能得到温度和压力的优化参数。高图形密度戳子的制作依然在发展之中。还没有足够量的工作来研究戳子的寿命问题。曾有研究报告报道,覆盖有超薄的特氟隆类薄膜的模板可以用来进行50次的浮刻而不需要中间清洗。报告指出最大的性能退化来自于嵌在戳子和聚合物之间的灰尘颗粒。如果戳子是从ellastometric母版制作出来的,抗穿刺层可能需要使用,而且进行大约5次压印后需要更换。值得关心的其他可能问题包括镶嵌的灰尘颗引起的戳子损伤或聚合物中图形损伤,以及连续压印之间戳子的清洗需要等。尽管进一步的优化和改良是必需的,但此项技术似乎有希望获得高生产率。压印过程包括对准、加热及冷却循环等,整个过程所需时间大约20分钟。使用具有较低玻璃化转换温度的聚合物可以缩短加热和冷却循环所需时间,因此可以缩短整个压印过程时间。

IV.纳米制造所面对的困难和挑战

上述每一种用于在衬底上图形刻制的技术都有其优点和缺点。目前,似乎没有哪个单一种技术可以用来高产量地刻制纳米尺度且任意形状的图形。我们可以将图形刻制的全过程分成下列步骤:

1.在一块模版上刻写图形

2.在过渡性或者功能性材料上复制模版上的图形

3.转移在过渡性或者功能性材料上复制的图形。

很显然第二步是最具挑战性的一步。先前描述的各项技术,例如电子束光刻或者扫描微探针光刻技术,已经能够刻写非常细小的图形。然而,这些技术都因相当费时而不适于规模生产。纳米压印术则因可作多片并行处理而可能解决规模生产问题。此项技术似乎很有希望,但是在它能被广泛应用之前现存的严重的材料问题必须加以解决。纳米球珠和倍塞共聚物光刻术则提供了将第一步和第二步整合的解决方案。在这些技术中,图形由球珠的尺寸或者倍塞共聚物的成分来确定。然而,用这两种光刻术刻写的纳米结构的形状非常有限。当这些技术被人们看好有很大的希望用来刻写图形以便生长出有序的纳米量子点阵列时,它们却完全不适于用来刻制任意形状和复杂结构的图形。为了能够制造出高质量的纳米器件,不但必须能够可靠地将图形转移到功能材料上,还必须保证在刻蚀过程中引入最小的损伤。湿法腐蚀技术典型地不产生或者产生最小的损伤,可是湿法腐蚀并不十分适于制备需要陡峭侧墙的结构,这是因为在掩模版下一定程度的钻蚀是不可避免的,而这个钻蚀决定性地影响微小结构的刻制。另一方面,用干法刻蚀技术,譬如,反应离子刻蚀(RIE)或者电子回旋共振(ECR)刻蚀,在优化条件下可以获得陡峭的侧墙。直到今天大多数刻蚀研究都集中于刻蚀速度以及刻蚀出垂直墙的能力,而关于刻蚀引入损伤的研究严重不足。已有研究表明,能在表面下100nm深处探测到刻蚀引入的损伤。当器件中的个别有源区尺寸小于100nm时,如此大的损伤是不能接受的。还有就是因为所有的纳米结构都有大的表面-体积比,必须尽可能地减少在纳米结构表面或者靠近的任何缺陷。

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用X光和EUV的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂樑能否使它达到可以接受的刻写速度。利用转移在自组装薄膜中形成的图形的技术,例如倍塞共聚物以及纳米球珠刻写技术则提供了实现成本不是那么昂贵的大面积图形刻写的一种可能途径。然而,在这种方式下形成的图形仅局限于点状或者柱状图形。对于制造相对简单的器件而言,此类技术是足够用的,但并不能解决微电子工业所面对的问题。需要将图形从一张模版复制到聚合物膜上的各种所谓“软光刻“方法提供了一种并行刻写的技术途径。模版可以用其他慢写技术来刻制,然后在模版上的图形可以通过要么热辅助要么溶液辅助的压印法来复制。同一块模版可以用来刻写多块衬底,而且不像那些依赖化学自组装图形形成机制的方法,它可以用来刻制任意形状的图形。然而,要想获得高生产率,某些技术问题如穿刺及因灰尘导致的损伤等问题需要加以解决。对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

另一项挑战是,为了更新我们关于纳米结构的认识和知识,有必要改善现有的表征技术或者发展一种新技术能够用来表征单个纳米尺度物体。由于自组装量子点在尺寸上的自然涨落,可信地表征单个纳米结构的能力对于研究这些结构的物理性质是绝对至关重要的。目前表征单个纳米结构的能力非常有限。譬如,没有一种结构表征工具能够用来确定一个纳米结构的表面结构到0.1À的精度或者更佳。透射电子显微术(TEM)能够用来研究一个晶体结构的内部情况,但是它不能提供有关表面以及靠近表面的原子排列情况的信息。扫描隧道显微术(STM)和原子力显微术(AFM)能够给出表面某区域的形貌,但它们并不能提供定量结构信息好到能仔细理解表面性质所要求的精度。当近场光学方法能够给出局部区域光谱信息时,它们能给出的关于局部杂质浓度的信息则很有限。除非目前用来表征表面和体材料的技术能够扩展到能够用来研究单个纳米体的表面和内部情况,否则能够得到的有关纳米结构的所有重要结构和组份的定量信息非常有限。

V.展望

你会喜欢下面的文章?

    年级写人的作文范例(整理5篇)

    - 阅0

    年级写人的作文篇1我最熟悉的人当然是我的弟弟啦,我的弟弟是个瓜子脸,乌黑的眉毛下有一双水汪汪的大眼睛。他还有一张会说的嘴,如果你和他斗嘴,他肯定斗得你无话可说。我弟弟特.....

    党员酒驾检讨书范例(精选3篇)

    - 阅0

    2020年党员酒驾检讨书范例篇1尊敬的交警同志:关于我酒后驾驶的行为,几天来,我认真反思,深刻自剖,为自己的行为感到了深深地愧疚和不安,在此,我谨向各位做出深刻检讨,并将我几天来的.....

    汉族的文化习俗范例(3篇)

    - 阅0

    汉族的文化习俗范文篇1商业源于人们以物易物的交换行为,人们通过商品的交换而换取所需的物品。旧时,南迁的客家社会经济主要是自给自足的自然经济。除了各地的县城以外,农村乡.....

    机械设计培训课程范例(12篇)

    - 阅0

    机械设计培训课程范文篇1关键词:课程体系;教学内容;课程建设;应用能力作者简介:王新荣(1965-),女,黑龙江佳木斯人,佳木斯大学机械工程学院,教授;王俊发(1958-),男,黑龙江佳木斯人,佳木斯大学.....

    教师个人工作总结标准模板范文3篇

    - 阅1

    2023年教师个人工作总结 篇1  本学年,本人接手担任学校教学工作。一学期来,我自始至终以认真严谨的治学态度....

    幼儿园教职工培训计划范文(精选5篇)

    - 阅1

    幼儿园教职工培训计划篇1一、培训目标和培训重点坚持以师德建设为中心,以促进教师专业发展为目标,以《指南》....