直流稳压电源的设计范例(12篇)

来源:网络

直流稳压电源的设计范文

【关键词】稳压三端稳压器CW7805

在电子电路设备中,一般都需要稳定的直流电源供电,目前,很多直流稳压电源都是采用串联反馈式稳压原理,即通过调整输出端取样电阻支路中的电位器来调整输出电压的范围。

1设计任务和要求

输出电压:UO=+5VUO=0~+12V(两组电压不能同时输出)

输出电流:IO=0~500mA

2电路的确定

整流器件采用硅桥,数字滤波器采用大容量的电解电容和小容量的有机薄膜电容器,稳压电路选择用集成稳压器组成串联电路。

3设计方案

电路图如图1所示:

在图1中,当转换开关S投向“固定”时,此稳压电路就通过三端稳压器CW7805输出+5V电压,是一个固定输出的直流稳压电源;

当转换开关S投向“可调”时,此时输出电压为:

UO=UXX+(UXX/R1+ID)×RPUZ(1)

式(1)中:UXX―所用集成稳压器标称输出电压值,此处为+5V

UZ―硅稳压管电压,值为-5V,加稳压管是为了可调输出从0V开始

ID―集成稳压器的静态工作电流

R1,RP―为适应固定输出改为可调输出而设置的外接取样电阻和电位器

式(1)中,UZ=UXX,输出电压可写成:

UO=UXX+(UXX/R1+ID)×RP

UO与RP成正比,即在RP=0时,输出电压UO=0V,随着RP阻值的增大,输出电压UO亦提高,实现了输出电压从0V起的可调。

4元件选择与电路参数的计算

4.1选择集成稳压器

CW7805的起点参数典型规范值为:

输入直流电压UI=10V

输出直流电压UO=5V

4.2确定输入电压

(1)当输出电压最低时,此时加于CW7805输入,输出两端之间的电压最高,但不得超过允许值,即UIUOmax<35V。

(2)当输出电压最高时,此时加于CW7805输入,输出两端之间的电压最低,但要稳压器正常工作,即UIUOmax>2V。

结合设计的具体要求,选UI=15V。当UO=0V时,UIUO=15V,稳压器输入,输出端之间的电压为超过允许值;当UO=12V时,UIUO=3V,稳压器亦能正常工作。

4.3确定变压器次级电压有效值U2,U3

采用桥式整流电容滤波电路,则输出电压:

U2=(1.05~1.1)UI/1.2

得U2=13.125V取U2=14V

同理,取U3=5V

4.4选择硅桥

在图2中,根据桥式整流电容滤波电路的输出电压公式:

(1)硅桥(Bridge1)的耐压值为:

URm1=U21.4×14V=19.6V

硅桥的额定电流为:

ID=1/2×I0max=1/2×500mA=250mA

由此,可选用500mA\50V的硅桥

(2)硅桥(Bridge2)的耐压值为:

URm2==7V

硅桥的额定电流为:

ID=1/2×I0max=1/2×500mA=250mA

由此,可选用500mA\14V的硅桥

4.5确定滤波电容C1

取RLC1≥3×T/2,则有:

C1≥=0.003F(T为交流电网电压的周期)。

选取C1和C4为3300uF/25V的铝电解电容器

4.6确定外接取样电阻R1

取样电流IR1≥(3~5)ID,取IR1=3ID,

则:R1=UXX/IR1=5V/3×3.2mA≈0.521K

可取R1=510?

4.7选择可调电位器RP

当RP的下端不接-5V辅助电源,而直接接地时,可得:

U0=UXX+(UXX/R1+ID)×RP

RP=(U0-UXX)/(UXX/R1+ID)≈0.538K

所以,可取RP为600?的可调电位器。

4.8确定R2

2CW13是硅稳压二极管,最大工作电流IZM=38mA,稳定电压UZ=5.5~6.5V,R2为限流电阻,有:R2=UZ/IZM

R2范围为140?~170?,可取R2=150?。

4.9C2,C3的选取

电路中C2,C3是为减小纹波,消除自激振荡而设立的。

C2=C3=C5=0.1~0.33uF

4.10-5V辅助硅稳压管稳压电路的设计

为抵消+5V而设置的-5V辅助硅稳压管稳压电路。

5结论

本设计是一个直流稳压电源,可以不同时输出两组电压(+5V和0~+12V),电路简单,易于实现。但在输出0~+12V时,用电位器对电压进行调节,由于电位器阻值的非线形和调整范围窄,使直流稳压电源难以实现输出的电压的精度调整。在稳压器公共端电流变化时,输出电压会受到影响,为进一步改善电路,可以在实用电路中加电压跟随器,将稳压器与取样电阻隔离。

参考文献

[1]张友汉著.电子线路设计应用手册[M].福州:福建科学技术出版社,2007(07).

[2]杨欣,王玉凤主编.电路设计与仿真[M].北京:清华大学出版社,2006(04).

[3]黄继昌主编.电子元器件应用手册[M].北京:人民邮电出版社,2004(07).

[4]童诗白,华成英主编.模拟电子技术[M].北京:高等教育出版社,2001(01).

作者简介

李翠翠(1983-),女,陕西省咸阳市人。大学本科学历。现为西安汽车科技职业学院助教。研究方向为汽车电子技术。

直流稳压电源的设计范文篇2

关键词:信号放大电路;放大测量电路;低通滤波电路;影响隔离

中图分类号:TN721+.5?34;TM930文献标识码:A文章编号:1004?373X(2017)14?0149?05

Abstract:Inviewofthefactsthatthelowsignal?to?noiseratio,pooranti?interferenceabilityandlowmeasurementaccuracyexistinthemeasuringprocessofmicrovolt?levelDCvoltagesignal,anamplifyingmeasurementcircuittakingTLC2652asitscoredeviceisproposedinthispapertorealizeprecisionamplificationofvoltagesignals(5~45μV).Thelow?passfilteringcircuitandband?stopcircuitareadoptedtoreduceitsinternalnoiseandexternalinterference.Theisolationcircuitisadoptedtoisolatetheeffectofthemeasuringendonthecollectionend.Thelinearregulatingchipisusedinpowermoduledesigntoimprovethemeasurementaccuracyandreducepowerconsumption.Thesimulationexperimentresultprovesthattheamplifyingmeasurementcircuitformicrovolt?levelDCvoltagesignalcansuppresscommonmodeinterferenceandtemperaturedrifting,hasgoodstabilityandstronganti?interference,anditsaccuracycanreachto0.044%.

Keywords:signalamplifyingcircuit;amplificationmeasuringcircuit;low?passfilteringcircuit;influenceisolation

0引言

信号检测是人们在当今时代获取信息的重要途径。在需要微弱信号检测的各个领域中,各N微弱的物理量信号都需要先转换成电压或电流信号之后再进行放大、并进行信号检测处理,因此研究微弱信号的检测方法具有重要意义。然而,由各种微弱物理量信号转换得到的电信号多数是微弱的直流或低频信号,如微波功率检波器输出的信号[1]。微弱信号,顾名思义信号的幅度是极其微弱的,但这不是微弱信号检测的难点所在,检测微弱直流信号的困难在于其被严重淹没于噪声信号中。在实际的电路测量系统中,微弱的直流信号更是容易受到各种直流误差的影响,特别是放大器的失调、漂移等误差的影响[1]。此外,微弱直流电压信号的检测还容易受到各种低频噪声的干扰,因此,直流微弱信号的检测困难重重。

从了解的资料来看,对微伏级直流电压信号的测量大致分为两种测量方法。一是将直流信号调制成幅值和直流信号呈比例关系的方波交流信号[2]。以避免直接放大微弱直流信号存在直流误差的影响,特别是直流放大器失调电压的影响,还可以避免外部工频干扰等低频噪声的影响。在各种直流调制技术中,应用最广泛的就是通过场效应管的开关特性来作为调制器。通过一定频率的控制信号控制场效应管栅极电压的极性来控制场效应管的通断,以达到调制直流信号的目的[1]。但存在的问题是:在调制过程中会产生斩波失调电压、调制尖峰信号等。场效应管作为电子开关的同时也存在开关管损耗。实际应用中模拟开关的这种理想效果是不可能达到的,场效应管开关在作为调制器时,无论有无输入信号,只要存在调制信号,模拟开关的输出端都会产生瞬态的尖峰电压,而且还会引起输出信号漂移,从而造成测量结果不精确。二是利用特低噪声、特低漂移的高精度直流放大器对微弱直流信号进行测量。如市面上的高精度直流放大器输出电压能达到伏级,可以给数据采集和处理,但存在的问题是,价格昂贵,不能广泛应用于实践研究。

为了解决微弱直流电压信号测量易受噪声干扰、测量精度不高、抗干扰能力差的问题,设计微伏级信号放大电路时,采用高精度仪表运算放大器TLC2652进行信号的精准放大,以提高测量精度;采用四阶低通滤波电路、双T型带阻滤波电路来减小内部噪声与外部干扰;采用高精度模拟信号隔离电路,隔离测量端对采集端的影响;采用低噪声、高效率的电源芯片及线性稳压芯片进行电源模块的设计,以提高测量精度并降低功耗。

1设计思路

微伏级直流电压信号,首先要通过放大才能被后端电路所采集。然而,后端采集电路的电压工作范围一般在伏级,因此放大电路的放大倍数应该设置的很大。但实现较高的放大倍数必须要进行多级放大才可实现,因为输入的直流微弱信号和噪声是叠加在一起的,一般比噪声小很多,如果输入级放大倍数设置过大,微弱直流电压信号在被放大的同时,噪声信号同样也会被放大,造成后续很难去除噪声[3]。但随着放大级数的增多,势必也带来很多杂波,此外,微弱直流信号的测量易受到各种低频噪声的干扰,及各种直流误差的影响,如放大器中的失调电压、温漂等。工频干扰也是一种低频噪声,这种干扰电信号进入电子检测系统会严重影响微弱信号检测的准确性。

因此,针对输入信号为微伏级直流电压信号,测量过程中存在信噪比低、测量精度不高、抗干扰能力差的问题,设计了微伏级直流电压信号放大电路。系统主要由高精度仪表放大电路、低通滤波电路、陷波电路及高精度隔离电路组成。微伏级直流电压信号采用屏蔽电缆送进高精度仪表放大电路进行初步放大后,首先进行低通滤波,再输入到中间级放大电路进行主要放大,而后进行高频噪声和市电50Hz降噪处理,以及通过高精度模拟信号隔离电路隔离测量端对采集端的影响,实现输入、输出和电源间的相互隔离。应用低噪声、高效率的电源芯片及线性稳压芯片进行电源模块的设计,以提高测量精度并降低功耗。经实验测量,系统可以实现对5~45μV范围内电压信号的精准放大,放大输出电压范围为0.25~2.25V,完全可以满足后级采集电路的需要,且能够达到0.044%的精度。此外,该电路还具有抗共模干扰、抑制温漂、稳定性好、抗干扰性强等特点。微伏级电压信号放大电路系统方框图如图1所示。

2信号放大电路

信号放大电路采用初级放大和中间级放大两级放大形式。传感器采样输出的直流电压信号经屏蔽电缆输入到初级放大电路,因此需要检测的直流电压信号微弱且含有大量杂波。从而要求选用的运算放大器具有以下特点:低失调电压、低温度漂移的高性能差动放大电路,以克服温漂;选用开环增益较大的运放,而单级放大器的闭环增益不可过大,这会大大减小增益误差,从而提高检测信号的精度。

因此,设计电路时采用高精度斩波稳零运算放大器TLC2652,具有优异的直流特性,失调电压及其漂移、低频噪声、电源电压变化、共模电压等对运算放大器的影响被降低到了最小[4]。Multisum中的具体设计电路如图2所示。

运算放大器TLC2652的增益由输入电阻和反馈电阻决定,计算公式为:

设计时输入电阻kΩ,反馈电阻kΩ,电路增益为50。电路中为确保运算放大器输入级差分放大电路的对称性,设置补偿电阻,其值为输入端接地时,反相输入端总等效电阻。电路中,使用绝缘电阻很高的优质电容器,可选择的容量范围为0.1~1μF之间。放大倍数的设置,要考虑到初级放大电路中存在有用信号和噪声一起输入的问题,如果初级放大电路的增益设置较大,信号和噪声将被同时放大,在这种情况下,若噪声幅值较大,无疑会降低电路信噪比(信噪比是指电子系统中信号和噪声的比值),不便于对信号的进一步去噪处理。另外,为确保运算放大器的精度,负反馈电阻的精度要很高,同时电路的闭环增益不能设置的太大;保证印制板较高的质量,以避免印制板表面存在的漏电流问题[4]。为此,可在印制板上设置保护环。高精度仪表放大器在放大微弱直流信号时,通常可在输出端加一低通滤波电路,以滤除输出电压中的交流分量来减小交流干扰,使电压输出更加稳定。中间级放大电路,设置在四阶低通滤波电路之后,主要目的是实现放大模块较大的放大倍数。

3滤波电路

因为需要检测的微伏级直流电压信号非常微弱且含有大量杂波,测量回路、仪表放大电路和相关器件的固有噪声以及外界的干扰噪声通常比被检测目标信号的幅值大很多,有用信号和噪声在经仪表放大电路后将被同时放大。此外,电路结构的不合理设计也会引入噪声干扰,所以,仅对信号进行放大是测量不出微伏级这样微小信号的[5]。电路中为了更好地提取出有用信号,设计了滤波模块来有效地抑制噪声。

3.1低通滤波电路

针对电路系统的内部噪声以及外部系统的干扰多为交流信号,设计四阶巴特沃斯型有源低通滤波电路对输入级放大电路的输出电压信号进行处理,以抑制放大了的噪声信号。设置低通滤波电路的截止频率为20Hz,选用单片集成运算放大器OP200,具体器件参数设置及电路设计如图3所示。图4为电路在Multisum中仿真的幅频特性。

3.2陷波电路

陷波电路也即带阻滤波电路,主要用来减少工频干扰。通常使用的各种仪器的供电电源都为市电或者经市电转换得到,而市电的频率为50Hz。这样测量电路中就会串入工频,产生工频干扰,严重时将导致电路无法接收信号[6]。电路中采用经典的双T型带阻滤波电路,其中要求电阻R和电容C有较高的精度,以保证带阻滤波电路的中心频率正好在50Hz处。图5为陷波电路结构原理图。

由此可以得出结论:为了使设计的陷波电路性能最佳,也即满足窄带滤波效果和高Q值,m应接近1取值。

设计电路时采用增益调节电位器,使其在50Hz处衰减效果最好。经计算kΩ,μF;为增益带宽调节电位器。图6为具体设计电路,图7为50Hz陷波电路在Multisum中仿真的幅频特性图。

4隔离电路

在微伏级直流电压信号放大测量过程中,抗干扰是一个不可避免的问题。若不通过信号隔离,测量系统就会引入各种电磁干扰。目诵藕胖谢烊敫扇判藕牛不但会降低测量的准确度,而且尖峰电磁脉冲会对后端采集电路造成一定破坏。因此,针对微弱直流电压信号测量存在的干扰问题,设计了隔离电路。

发光二极管和光敏三极管的伏安特性使光电耦合器件非线性失真十分严重,一般只用来隔离数字信号,而不能简单应用到对模拟信号的隔离。因此,模拟信号的隔离相对复杂的多,一方面要求其达到隔离效果,另一方面又要求最大限度地使模拟信号不失真,也就是能确保模拟信号的线性传输[7]。有源隔离模块T6550D/S内部采用电磁隔离技术,精度达到13~14位,具有良好的线性度及优良的温漂与时漂性能[8],能够实现输入/输出和电源间的相互隔离,非常适合高精度信号隔离测量。电路接口如图8所示。

直流稳压电源的设计范文篇3

简介

基于微处理器的器件需要使用稳压电源(PSU)以检测输入功率损耗和继续在完成内存备份(即将关键数据写入非易失性存储器)的时间内进行供电。

设计连续输出功率的一种方法是:生成较高的输出电压和使用线性稳压器生成所需的较低电压。线性稳压器输入端电容用于提供维持时间。但遗憾的是,这种方法会降低电源的整体效率,原因是它需要使用次级线性稳压器,进而需要更大的变压器和元件,使得电源电路初级侧的额定功率更高。

另一种解决方案是使用已知的导通时间延长技术,这种方法在PowerIntegrations(PI)的一系列离线式开关IC中得到采用。在PI芯片中,导通时间延长功能与开/关控制功能相结合,用来提供稳压。这两种技术都可以替代传统的脉宽调制(PWM)控制,而无需添加额外的电路。

内存备份功率要求

需要在关断之前存储关键数据的产品应用通常会使用EEPROM内存,并需要获得稳压电源电压,以便在完成内存写周期的时间持续供电。对于某些EEPROM内存而言,写周期时间可能长达10ms。为了提供足够的写周期时间,标准的做法是:通过关闭所有外设和不必要的额外负载来降低断电序列条件下的功耗。直流总线电压和断电序列的关系,从而可以有效利用储存在输入直流总线端滤波电容中的能量。

功率转换器阶段需要使用储存于输入滤波电容中的能量,以便将输出电压维持在稳压限制范围之内。在图2中,这代表着直流总线电压从Vmin2降到Vmin3,及进行数据备份所需要维持的一段时间(检测到输入失败情况后)。

对于大多数低功率应用而言,反激式转换器因为具有成本低、元件数量少和在通用输入应用中易于设计等优势,而成为一种可选的拓扑结构。我们将用两个反激式转换器进行比较,来说明导通时间延长技术的效率及其对电容选择的影响:一个反激式转换器在非连续导通模式工作一固定频率技术(DCMFF),而另一个则利用导通时间延长来实施非连续导通模式一占空比扩展技术(DCMDE)。

输入电压下降时的功率输出

案例1:DCMFF一最大占空比为50%。

在本例中,我们将针对工作频率为100kHz并使用了一个500μH初级电感的21.25W(5V@4.25A)电源设计,对最大占空比为50%的DCMFF转换阶段的功率输出能力进行测评。假设能效为84%。

此设计的Vmin为100V。当直流总线电压为100V时,如果所连负载等于满载(即21.25W),则占空比将达到最大值。

对于最大占空比为50%的DCMFF设计最大输出功率与直流总线电压之间的关系如公式(1)所示。

电路的最大功率能力将随着电压的下降而下降,对于为50%满载的负载,电路可以维持输出端稳压,使直流总线电压仅下降到69V。

案例2:DCMDE一导通时间延长而不改变关断时间可以自动扩展占空比。要使导通时间延长方法与固定频率DCMFF方法进行可行性对比,需要将VmⅢ=100V下的占空比假设为50%。其结果是,电路在100V直流输入电压下输出满载功率时的初级电感值相同,以及高于100VDC的直流总线电压具有相同的工作条件。

电路工作情况:电路的工作情况与DCMFF配置相同,直到直流输入电压降到与Vmin相等的值。随着输入电压降到Vmin以下,tO-tl的时间间隔将被延长,直到初级电流达到预定的峰值初级电流值,后者等于输入电压为Vmin(占空比为50%)时的预计值。t1到t2的时间间隔保持不变,且等于正常工作条件下开关频率的时间间隔的一半。

输入电压下降时初级绕组电流波形的变化。由于电感电流斜率随着输入电压的降低而降低,因此初级电流达到所需的峰值电流值将需要更长的时间。虽然通过延长导通时间间隔可以自动降低工作频率,但每个工作周期储存在电感中的能量仍将保持不变。工作频率下降可以导致电路的最大功率能力随之下降。此时,电路的最大功率能力曲线表现为不同的形状。

最小输入电压与最大输出功率之间的关系如公式(2)和公式(3)所示。

对比以上两条曲线可以明显确定,与DCMFF(固定频率占空比限制)设计相比,导通时间延长方案可以使功率转换器在较低的输入电压下输出更高的功率。

通过这两条曲线还可以看到,对于输出端50%的负载,DCMFF可以维持直流总线电压降至大约69V的稳压,而DCMDE转换器则可以维持低至31.5V的稳压。因此,DCMDE方法使电源能够为内存备份操作提供更长的维持时间,充分利用储存于输入电容中的能量。

直接输入总线滤波电容值的选择

直流总线滤波电容可以用来将转换器阶段的输入电压维持在等于或高于Vmin值的水平,使转换器可以保持工作并维持稳压。转换器在td期间所需的能量由放电电容提供。所需的电容值可以通过公式(4)进行估算。

90VDC或100VDC的值是转换器最小直流总线电压的最佳选择。Vmin值进一步减小有助于降低输入端所需的电容值,但这也会导致初级绕组中的峰值电流大幅升高,并且还需要过大设计电路中的开关元件。

如果开关电源必须保持工作并在干扰期间提供稳压输出电压,则必须对其输入电容进行选择,以使最小输入RMS电压比额定电压低30%,即120V系统的最小输入RMS电压约为84VAC(参见公式(5)和公式(6))。

在任何给定输入电源电压情况下,时间td是工作频率的函数。

在不同转换器工作频率下的不同最小直流总线电压值(Vmin)所需的输入电容估计值。三组曲线分别表示:不需要任何维持的条件下的额定电容;4ms的维持时间;输入电源线电压频率的一个半周期的维持时间。

对于正常工作情况或存在短时间电源线干扰的工作情况,提供了易于使用的倍增系数,用于计算所需的电容值。此电容的值称为Cn或额定电容。

用于在断电序列期间维持稳压的直流总线电压最小值可以从图4得出,或使用公式(1]和公式(2)计算得出。然后,可以使用公式(7)来计算输入端所需的电容值,以确保在完成断电序列期间能够提供足够长的维持时间。

Ch=完成断电序列或内存备份所需的电容

Pr=在断电序列期间降低的输出功率水平

ηr=功率水平降低时的转换器效率

th=断电序列的持续时间

Vs=断电序列开始时的直流总线电压

Ve=功率降低时维持稳压所需要达到的直流总线电压

如果ch远远大于cn,则必须使用较高的值。可以通过提高Vmin来减小计算的Cn和ch值之间的差异。

对于设计用于在低至100VDC的直流总线电压下工作且必须在低至47Hz的频率下工作的20W通用输入电源来说,正常工作情况下的输入电容值或cn将大约为100gF,其前提是转换器效率超过85%。

如果在输入电源失败后必须至少在35ms的时间内提供稳压电源(以便完成EEPROM写周期),那么电容ch中必须具备足够的能量。

如果内存备份期间所需的负载为10w(满载的50%),且电源采用最大占空比为50%、固定频率100kHz控制器设计而成,那么所需的电容值将为172μF,该值可以使用公式(1)、公式(4)或图4计算得出。

如果将此电源的控制方案修改为使用导通时间延长技术,则所需的Ch值可大幅减少到100μF,使用公式(4)或图4可以计算出该值。因此,无需扩充输入电容便能满足延长的(35ms)功率要求。

在前面的示例中,假设在较低直流电压和50%的负载条件下运行时转换器功率降至78%(在实际设计中,这一点可经过全面验证)。

导通时间延长技术的限制

虽然导通时间延长可显著提高反激式电源的功率输出,但必须注意的是,不要让电源在延长的导通时问下无限期地运行。导通时间在超过正常极限之外的任何延长均会导致RMS电流的增加,从而导致MOSFET及初级绕组上的功率全部耗尽。

直流稳压电源的设计范文篇4

关键词:稳压电路;功耗;工作效率

0引言

直流稳压电源必须经过稳压电路和滤波电路后才能得到电压基本稳定、纹波相对较小的直流电,通过控制电路精确快速调整后,得到稳压精度和性能符合标准的直流电压。再经过滤波器滤波后,得到所需要的输出直流电。

1硬件系统结构

从实用性、精确度和检测设备实际等多方面考虑,采用单片机技术对电路进行处理,具有低功耗、高性能、抗干扰能力强等优点,采用单片机技术的稳压电路。

总体设计方案主要为利用AT89C52单片机作为控制模块,电源模块运用直流稳压电源的工作原理,为转换电路提供所需的工作电压;数模转换模块运用数模转换器、运算放大器等元件将电信号进行处理,最终输出满足条件的电压值。上述组合配合键盘扫描模块、LCD显示模块等其他组件,把220V、50Hz交流电实现低电压直流0到30V可调输出。

硬件设计由AT89C52单片机作为控制中心。由电源电路、数模转换电路、显示电路和键盘电路等部分共同组成。系统的结构框图如下图所示。

2T89C52型单片机简述

单片机的主控系统如下图所示。XTAL1引脚和XTAL2引脚接时钟电路,XTAL1接外部晶振和微调电容的一端,在片内为振荡器倒相放大器的输入,XTAL2接外部晶振和微调电容的另一端,在片内为振荡器倒相放大器的输出。1KST引脚为复位端,接在电容与P1.0P1.1、电阻并联处EA引脚为接地端。

P1.2三端与数模转换器5615相连,右侧接口分别与显示电路(ADO-AD7、A8-A10)和按键电路(A13、A14)相连。

3键盘电路

如图所示,键盘电路有“+”、“-”两个按键,分别同单片机P2.5、P2.6端口相连。按键功能顾名思义:“+”表示增加电压值、“-”表示减少电压值,按键一次改变的电压值为0.1V。电路主要由2个10kΩ的电阻组成,当有键按下时,电路中出现通路产生电流,传输到单片机中,单片机软件系统进行数据处理,分别将数字信号传递给数模转换器5615和LCD显示器。

4显示电路

设计的显示电路主要应用LCD液晶显示屏,考虑到液晶显示屏显示效果好,清晰直观,性价比高。标识端口D0到D7端口作为数据输入端,标识端口E、1KW、1KS作为控制信号输入端。显示屏上面共显示“Input”、“Output”两个数值,“Input”为单片机发送给5615的数值,“Output”为外输出的电压值。其电路连接如图所示:

5电源电路

本设计的电源电路主要包括降压、整流、滤波、稳压共四部分。工作主要通过外接电源输入220V、50Hz交流电,经过处理后,为转换电路输出工作所需的5V、±15V、30V、32V五个电压值,最大工作电流为IOMAX为1A,其主电路图详见附录B。由于电路图比较大,分为上下两部分电路着重对各组成进行分析阐述。

电源电路(上)如下所示,其工作目标为输出5V和±15V三个电压值。

(1)降压。此处的电源变压器(TR1)起降压作用,将220V交流电压变为整流电路所需的低压交流电。

(2)整流。电路的作用是将交流降压电路输出的大小、方向都变化的低电压交流电转换成单相脉动直流电。

(3)滤波。电路的主要元件是电容和电感,以电容滤波电路最常用,其特点是电路简单,输出脉动较小,输出电压平均值大,但输出电压随负载变化较大。

(4)稳压。经过滤波电路,输出电压虽已变得平滑,但输出电压会随负载变化较大,后面需接稳压电路。

根据本设计条件,稳压器选用型号为LM7815、LM7915和LM7805的三端固定稳压器各一个,分别用于输出三个电压值电源的稳压。

电源电路如下所示,其工作目标为输出32V和30V两个电压值。

经滤波之后,一条支路直接将32V电压输出,供数模转换电路LM317稳压器使用;另一支路连接LM317稳压器,并与电阻R2和R1并联,所输出电压为:U新=32V×R2/(R1+R2)=30V,通过计算可得R1:R2=1:23,由电路需满足负载要求,应选阻值较大电阻,使电压更稳定,因而选择R1=200Ω,R2=4600Ω。电容C2在输出前用于滤除小波纹,电路输出直流30V电压,供数模转换电路OPA454运算放大器输入。

6数模转换电路

本电路用于将数控部分传递来的数据信号转换成电压信号输出,也就是我们通常说的数模转换(D/A转换)。由于本电路图较长,分为前后两部分来阐述。

首先介绍下应用的几个元件。

(1)TLC5615串行数模转换器:输出为电压型,最大输出电压是基准电压值的两倍,并带有上电复位功能(把DAC寄存器复位至全零)。

(2)LM324四运算放大器:具有真正的差分输入,其最主要的优点是可工作在低至3V或者高至32V的电源下,共模输入范围更是包括了负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。其应用领域包括传感器放大器,直流增益模块和所有传统的运算放大器。

(3)OPA454运算放大器:它是一种低成本的运算放大器,其最大的优点是,可以有效输出10~100V范围内的电压值,并允许运用在标准低压逻辑电路中。采用此器件,主要用于电路的最后一级放大。

(4)LM317集成稳压模块:最广泛的电源集成电路之一,有固定式三段稳压电路的最简单形式,又具备输出电压可调的特点。此外,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高等优点。其输出电压范围为1.2V到37V,能够提供超过1.5A的电流,此稳压器非常易于使用。

直流稳压电源的设计范文1篇5

关键词:声光控制;照明;电路;设计

近些年来,节能减排是我国倡导的发展观念。而避免资源浪费不仅是我国各行业企业需要做的工作,还应该落实及贯彻到各类生活场景中。过去阶段,我国学校、工厂、小区等场所因为夜晚照明灯常亮造成大量电能损失。而手控照明灯的引用虽然有效降低了夜晚照明灯使用的电能,但存在一定的不变。随着科学技术的不断发展,现如今已经研发出一种声光控制照明电路,该电路的设计突破了传统的照明控制方法,并带来了质的飞跃。

1声光控制照明电路设计意义

过去阶段,我国公共照明灯一般都采用手动式的开关方式。如在住宅小区的楼梯过道中,夜晚居民想要打开灯光还需触碰开关装置,这样就会给夜晚视力不好的居民带来一些困扰。还有在一些厂区、学校等地,夜晚路灯彻夜不关,这就会带来能源上的浪费。再到后来,出现了声控灯,这种照明电路的设计虽然为夜晚行人带来了方便,但其存在一个弊端,就是白天时候也受声音影响而开灯。人们为解决这一问题只好定时定点的开关总电源,这样一来,虽然起到了节能目的,但为加大了管理负担。而声光控制照明电路的设计,可有效改善上述所有问题。通过声源和光源的双重控制,为照明设备的使用和管理带来很大便捷。同时,该照明电路应用范围也很广泛,只要不是封闭场所,大多都可以使用。

2基于电子技术的声光控制照明电路总方案设计

声光照明电路总方案设计的原理:首先,在该电路接收到声信号时,会由声电装换装置把声信号改变为电信号。此时的电信号相对薄弱且频率不一致,所以会经过放大电路和处理电路的加工,使之成为频率一致且适用于控制电路的控制信号。其次,在这一过程中,当电路接收到的光信号相对薄弱时,该部分的控制会打开,且受光信号的影响一直处于恒定状态。此时,该电路的整体开关就受到声源的影响。反之,若处于白天时,电路接收到的光信号强烈,会关闭光控部分,此时声控部分则无法发挥控制作用。所以,该电路的原理是以光信号作为基础条件,以声信号来进行控制。声光控制照明电路的的设计刚好满足使用者对声光控制照明设备的使用需求.即在白天或太阳光较亮时,人们可视性较高,则不需要照明。这时,电路受光源影响处于限制状态,不会因为接受来的声音而亮灯。在夜晚太阳光微弱时,人们视力受黑暗的影响,看不清周围食物,所以这时需要照明设备。该电路在夜晚时处于可触发状态,受声音影响开关,人们只需要发出脚步声或其他声音,就可以打开照明设备。在没有声音时及开启一定时间之后,该设备自动关闭。

3各电路设计

3.1电源电路电流电路的设计需要保证电路正常工作及满足声光控制照明电路工作原理,同时还需要保证电流电路整体结构简单化,不可过于复杂。要满足以上条件,可从电流电路中降压器、稳压器、整流器以及滤波器这四个装置的选用着手。其中降压装置选用的是稳压二极管。在输出稳压直流后需要经过降压电容器(C1)、全桥整流器(QD)以及滤波电容(C2)后,在经过稳压二极管(DW)进行稳压,从而得到稳定的、满足照明电路需要的电压。电源电路的各类元器件及参数的选择需要结合电路的实际需求。首先,通过计算得出,全桥整流器(QD)应该选用型号为1A300V的二极管。其次稳压二极管的选用可根据声光控制照明电路稳压直流电源电压,该电压而+9V,所以可选用型号为2CW57的稳压二极管,这个型号的稳压二极管稳定电压为8.5V到9.5V,所以符合电路需求。再次,降压电容器(C1)的选用型号需要根据电源电压。合理情况下,降压电容器的耐压值应该是电源电压的两倍以上,如400V及400V以上耐压的电容器则可适用。最后,滤波器的型号选择可根据RC时间常数大于3到5倍电源半周期这一原理进行选择。3.2信号放大电路信号放大线路的设计可分为拾音器和放大器两个部分。在压电蜂鸣器(拾音装置)选择上,要保证内部压电陶瓷片灵敏性较高,并且价格不贵,从而保证整体电路的灵敏。拾音器可选用电压蜂鸣器HTD35A-1这个型号的装置,该型号装置采集到声音之后,会通过压电陶瓷片的绕曲变形产生微弱的电效应。这时,电信号在通过电路进入直藕式音频放大器,使这个电信号放大。同时,再经过T3时,对产生倒向放大,从而触发单稳态电路。3.3控制电路声光控制照明电路的控制电路图。555是时基电路,它的四角受到光敏三极管不同阻抗的改变来控制高低电平,而光敏三极管阻抗的变化受光源强弱的影响,具体可分为以下两种情况:(1)强制复位状态。在白天光敏三极管感受较大光照时,单稳态触发器会应较大阻抗的影响,造成输出低电平,这就就处于强制复位状态。在强制复位状态下,555不会产生翻转置位,所以声光控制照明不会发亮。(2)在夜晚光敏三极管感受光照小,则单稳态触发器受到的阻抗就小,则输出高电平,555处于单稳态触发状态。而如果此时拾音器接收到了声音,产生了声信号,通过加工形成极大电流,并触发单稳触发器,改变555状态,产生翻转置位,使可控硅触发倒通,这样一来声光控制照明就会亮,并保持一定时间段,即120S。在该电路中,各类元器件的选择要符合声光控制照明电路的特点,所以单稳态触发电路中的定时原件应该满足灯光持续120S这一需求。而三极管可选用型号3DK2。改电路电容为滤波电容,所以C9应按选用小电容,如0.01μ。3.4光电传感器电路光电传感器电路设计也要满足该照明电路的需求。如对光源的敏感程度、光谱响应范围灯,只有贴切实际选用最为合适的,才能使声光控制照明设备正常使用。如光敏三极管的选用型号可为3DU5,该型号的光敏三极管的光谱响应范围正好符合需求,电压工作范围也在6V到8V之间。

4总结

声光控制照明电路为人们夜间生活带来很大便捷,并发挥着节省电能源的作用。并且,声光控制照明电路可完全自动化开关,节省了人力。这种自动化的操作模式及节省能源的设计理念,正是二十一世纪时展的产物。该电路的设计过程需要结合声光控制原理及电路特性,各元器件的选择也要满足实际需求,只有这样,才能确保声光控制照明电路能够正常使用。

参考文献

[1]贺廉云.基于电子技术的声光控制照明电路设计[J].电子世界,2014,(21):27-27,32.

[2]李素平.声光控制延时开关电路系统设计[J].电子世界,2016,(13):197,199.

[3]李桂兰.声光控制路灯电路的设计[J].电子制作,2013,(7):17.

[4]黄程云,韩哲.智能照明节电控制新技术[J].节能技术,2013,31(6):572-574.

[5]李桂兰.声光控制路灯电路的设计[J].电子制作,2013,(6):23.

直流稳压电源的设计范文篇6

【关键词】高性能;数字化交流稳压电源;设计开发

中图分类号:TM71文献标识码A文章编号1006-0278(2015)09-148-01

一、高性能交流稳压电源的发展趋势

(一)智能化与数字化

目前在研制高性能、高精度、多功能的仪器设备时,几乎没有不考虑采用微处理器的。以微处理器为主体取代传统仪器设备的常规电子线路,将计算机技术与控制技术结合在一起,组成新一代的所谓“智能化仪器设备”。智能仪器解决了许多传统仪器不能或不易解决的难题,同时还能简化系统电路,提高系统可靠性,加快产品的开发速度。交流稳压电源一方面为仪器设备提供电能量,是仪器设备的“动力源”,另一面它本身就是仪器设备,因此,它有可能而且应当智能化。

(二)模块化

电源的模块化有两方面的含义,其一是指功率器件的模块化;其二是指电源单元的模块化。我们常见的功率器件模块含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的电源装置。

由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。

(三)绿色化

电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECI000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,为21世纪批量生产各种绿色交流稳压电源产品奠定了基础。

二、高性能数字化交流稳压电源的设计与开发

(一)功能设定

功能设定是交流稳压电源进行设计与开发的基础与依据。首先交流稳压电源的设计应当满足最基本的电源功能要求,从大的方面来说一个是供电功能―电源应当保证具有稳定的供电功能,另一个是保护功能:1.如果电路出现短路问题,可及时切断电源,当故障解决,可恢复原本工作状态;2.如果电路负载过大,应根据负载情况在一定的时间内自动关机(过载>>12o%,6oB后关机/过载大于lso%,2sB内关机;3.电压保护,电压过大或者过小都会对电源本身以及设备运行造成影响,因此当电压在264V以上或者176V以下时应及时使稳压电源关闭;4.过热保护,当逆变器的温度达到安全值以上时,应使稳压电源关闭;5.直流母线电流负载超过规定的1s0%时,应当使稳压电源关闭。

(二)电路设计

电路设计采用拓扑结构,交流电在整流桥予以整流处理后变为直流信号,这一信号再经由滤波电路到达逆变电路,逆变电路又将这一信号整合为交流信号,反向输回滤波电路,然后在隔离变压器的作用下,交流信号成为精密且稳定的电压。变化电路由逆变开关的各种器件所组成,有隔离与非隔离两种、隔离式的变化电路应用较为广泛,逆变装置应用的功率变换电路有三相全桥、单项全桥、半桥以及推挽等。

(三)控制系统

整个控制系统由八个模块组成,每个模块都有不同的功能分区:1.信号采集模块,对信息的采集有利于系统参数的设置,保证输出波形能够达到理想的状态,系统需要采集的信息包括电网与稳定电源的电流幅值、电压幅值以及频率;2.通信模块,技术人员对设备的操控与管理都需要通过通信系统来完成,稳压电源的通信模块有两个接口,Ethernet与RS485;3.键盘控制与屏幕显示模块,键盘可以取代开关完成对稳压电源的远程控制,完成对逆变器的开关,可对其进行菜单设置,输入或取消指令,查询信息与设置密码等、屏幕则可以将电源运行的状态,功率、电流、电压等参数都可在屏幕上作以展示;4.驱动模块,主要是指对逆变电路的驱动,有两种方式:a.对PWM信号的功率予以放大;h.将主控电路与PWM信号以及逆变电路的电气进行隔离;5.DSP单元模块,DSP是逆变主控芯片,可对IGBT予以瞬时保护,能够保证输出电压的稳定性,使波形达到理想状态,另外还能够产生脉冲信号以驱动IG-BT}OARM模块,ARM有着通信功能,它能将DSP收集到的运行数据传送给系统,也可以将系统发出的命令传输给DSP,它是人机互动实现的技术支持与基础;6.实时时钟,保证操作系统与运行系统时间的一致性,另外也可对系统参数与故障数据进行必要记录;7.保护与报警模块,系统在运行的过程中也在进行自我检测与保护,故障发生时可进行自主诊断,如有较大故障则发出警报.以警示灯或蜂鸣器进行警示。

三、结语

总而言之,交流稳压电源有着较高的稳定性、精确度与可靠性,其设计与开发对自测设备的运行有着重要的意义,随着科技的发展,交流稳压电源呈现出了数字化与高性能的特点,对其进行探究,有着一定的现实意义。

参考文献:

直流稳压电源的设计范文1篇7

摘要:智能建筑瞬变浪涌电滋干扰瞬变脉冲

随着国际信息潮流冲击和微电子科技的沸腾,加上通讯、计算机及自动控制技术日新月异,使得建筑开始走向高品质、高功能领域,形成一种新的建筑形式――智能建筑(InetlligentBuildings)。由于在智能建筑中运用了许多计算机和微电子设备,对其供电电源的质量提供了新的要求。因为电源品质的好坏,将直接影响智能建筑中设备的运行稳定性和可靠性,甚至导致重大人身、设备事故和造成巨大的经济损失。这种影响不仅来自供电电源的电压、频率及电流等基本要素是否满足用电设备的要求,而且也来自所提供的供电电源的电网质量。

由于电子计算机、微处理器以及其他电子仪器设备普遍存在着绝缘强度低、对供电电源的质量要求高、过电压耐受能力差的弱点,使得这些高灵敏的电子系统在运行时,经常出现程序运行错误、数据错误、时间错误、死机、无故重新启动甚至造成用电设备的永久性损坏,给人们日常生活造成巨大损失。为此,在智能建筑中,探究其供电电源质量,实施有效的防护办法,已是必然的趋向,而且受到世界各国普遍关注。

1电源质量的技术指标

衡量电源质量的技术指标主要包括摘要:电压波动、频率波动、谐波和三相不平衡等。众所周知,供电电源质量会受到多种因素的影响,如负荷的变化、大量非线性负载的使用、高次谐波的影响、功率因数补偿电容的投入和切断、雷电和人为故障、公共设施(如电动机、电梯等)等都会影响电源的品质,从而降低供电电源的质量。

1.1电压波动(Undulatingvoltage)

理想电源电压正弦波的波形是连续、光滑、没有畸变的,其幅值和频率是稳定的。当负荷发生变化时,负荷出现较大的增加时,非凡是四周有大型设备处于启动时,使得供电电源正弦波的幅值受到影响,产生低电压。当供电电源电压波动超过答应范围时,就会使计算机和精密的电子设备运算出现错误,甚至会使计算机的停电检测电路误认为停电,而发生停电处理信号,影响计算机的正常工作。一般计算机答应电压波动范围为摘要:AC380V、220V±5%。计算机在电压降低至额定电压的70%时,计算机就视为中断。为此,《电子计算机机房设计规范》GB50174-93(以下简称《规范》)对电压波动明确规定,将电压波动分为A、B、C三级(见表1)。

电压波动等级表1

电压等级A级B级C级

波动范围±2%±5%+7%~-13%

1.2频率波动(Undulatingfrequency)

供电电源频率波动主要由于电网超负荷运行而引起发电机转速的变化所致。而计算机的外部设备大多采用同步电动机,一般计算机频率答应波动范围为50Hz±1%.当供电电源频率波动超过答应范围时,会使计算机信息存储的频率发生变化而产生错误,甚至会产生信息丢失等。《规范》对频率波动明确规定,将频率波动分为A、B、C三级(见表2)。

频率波动等级表2

频率等级A级B级C级

波动范围±0.2%±5%+7%~-13%

1.3波动失真(Waveforndistortion)

产生电源电压波形失真的主要原因是由于电网中非线性负载,非凡是一些大功率的可控整流装置的存在会对供电电源的电压波形产生烃,还会使计算机的相对控制部分产生不利的影响;这种波形畸变,还会使计算机直流电源回路中的滤波电容上的电流明显增大,电容器发热;还由于锯状波形的出现,会使计算机的停电检测电路误认为停电,而发出停电处理信号,影响计算机的正常工作。衡量波形失真的技术指标是波形失真率(Waveformdistortionrate),即用电设备输入端交流电压所有高次谐波之和和基波有效值之比的百分数。《规范》对波形失真率规定分为A、B、C三级(见表3)

波形失真率等级表3

波形失真等级A级B级C级

失真率(%)3-55-88-10

1.4瞬变浪涌和瞬变下跌

瞬变浪涌(Transientvoltagesurge)是指正弦波在工频一周或几周范围内,电源电压正弦波幅值快速增加。瞬变浪涌一般用最大瞬变率表示。瞬变下跌(Tran-sitionvoltagefall),又称凹口,它是指正弦波在工频一周或几周范围内,电源电压正弦波幅值快速下降。瞬变下跌一般用最大瞬变下跌率表示。瞬变浪涌和瞬变下跌,瞬间内电压幅值快速增加或减小会对计算机系统形成干扰,导致其运算错误或者破坏存储的数据和程序。目前,国内未对瞬变大瞬变率摘要:(半周或更长)≤20%;恢复过程中降至15%以内,为50ms;然后降至6%以内,为0.5s。答应最大瞬变下跌率摘要:(半周或更长)≤30%;恢复到-20%以内,为50ms;恢复到-13.3%以内,为0.5s。

1.5瞬变脉冲(Transientvoltagepulse)

瞬变脉冲,又称尖峰或者电压闪变,是指在小于电网半个周期的时间内电网理想正弦波上叠加的窄脉冲。引起瞬变脉冲的原因很多,一般主要由以下几方面摘要:

1.5.1内部过电压(Internalovervoltage)

即在电力系统的内部,由于重负荷、感性负荷、补偿电容的投入和切除,开关和保险装置的操作以及短路故障的发生,都会使系统参数发生变化,引起电力系统的内部电磁能量的转化和传递,在系统中出现过电压。据统计,在整个瞬变脉冲事故中因内部过电压造成的占有80%。

1.5.2雷电(Lightning)

在雷电中心1.5km~2km范围内都可能产生危险过电压,损坏电路上的设备。当雷击输电线或雷闪电发生在线路四周时,通过直接或间接耦合方式雷闪放电形成暂态过电压将以流动波形式沿线路传播,危及设备平安。据统计,在整个瞬变脉冲事故中因雷击产生过电压造成的约占18%左右。

计算机和精密仪器设备的信号电压很低,一般只有10V左右,所以对闪电脉冲过电压极为敏感,极易受闪电脉冲过电压的干扰和损坏。一般电气设备答应的闪电脉冲电压为6,000V,而计算机和精密仪器设备估计在几十伏到几百伏就会受到损坏。

1.6三相不平衡(Unbalancethreephasecircuit)

由于三相负荷分配不均等,使三相负荷电流不对称,由此产生三相负序分量。不平衡度是衡量三相负荷状态的指标,主要包括电压不平衡、电流不平衡、相角不平衡。三相不平衡窨到什么程度才会影响计算机的稳定、可靠运行,目前尚无完整资料。只有参考厂商有关三相不平衡具体要求,以保证计算机及其设备正常、稳定运行。一般计算机答应相电压不平衡≤120o±3o。

1.7瞬间停电(Interruptpower-supply)

假如发生电网瞬间停电,将直接影响计算机的正常运行。当电源中断1.5ms以内是,可由计算机主机的大电容器放电来维持计算机的继续运行,对系统无影响。而当在电源中断1.5ms以上时,由于存储器一般采用MOS电路,一旦停电时间长,计算机就会失去记忆,使大量运算过程的数据丢失,致使计算机运算错误乃至停机.一般计算机要求电源中断在10ms之内.对于瞬间停电答应持续时间,《规范》中对供电质量规定分为A、B、C三级。

A级摘要:Oms~4ms;B级摘要:4ms~200ms;C级摘要:200ms~1500ms

1.8电磁干扰(ElectromagneticInterference简称EMI)

电磁干扰,有也称电磁污染,它是电子系统辐射的寄生电能。电磁干扰主要来自以下两方面摘要:

①电缆、电线既是造成电磁干扰的主要发生器,也是主要的接收器。作为发生器,它向空间辐射电磁波,对计算机系统形成的干扰。作为接收器,它也能敏感地接收从其它相邻干扰源所发射电磁波的干扰。由于计算机系统中的逻辑脉冲前沿很陡峭(纳秒级),对30Hz~100Hz的电磁干扰十分敏感,会使计算机系统中的逻辑出现错误动作。

②核电脉冲(NuclearElectromagneticPulse简称NEMP)核爆炸产生的电磁脉冲强度高、覆盖面大、持续时间短(1μs)、等值频率可高过100MHz。电磁脉冲将在电网络中耦合产生暂态过电压,危害极大。

以上是衡量电源质量的主要技术指标,这些技术指标的好坏,反映了电源质量的情况,将直接影响计算机系统的运行,为此,应视电源污染的程度以及计算机系统对电源品质的要求,采取相应的防护办法,防止电网中其它设备的干扰,提高供电质量,使计算机系统能够稳定、可靠运行。

2改善电源质量的方法

影响电源质量的因素是复杂的,然而,当受到污染后的电源为计算机和精密电子设备供电时,对其运行是极为有害的。当城市电网的电源质量不能满足要求时,要根据需要,采用合理的供电系统以及必要的技术办法,有针对性地消除污染电源对计算机和精密电子设备的影响。这些办法包括摘要:采用隔离变压器、滤波器、稳压设备、不间断电源以及瞬变信号、滤除高频噪声、稳定电压和城市电网隔离,消除电压和频率的偏差以及吸收浪涌等各种干扰,从而获得理想的电源。

常用的几种计算机供配电系统主要有直接供电系统,隔离变压器、稳压器和滤波器组合系统;不间断供电系统等。

2.1直接供电系统

直接供电系统就是将市电(通常为AC380V,50Hz)直接接至配电柜,然后再分送给计算机设备。直接供电系统只适用于电网质量的技术指标能满足计算机的要求,且四周没有较大负荷的启动和制动以及电磁干扰很小的地方。直接供电系统优点是摘要:供电系统简单、设备少、投资低、运行费用少、维修方便等。它的缺点是对电网质量要求高,对电源污染没有任何防护,易受电网负荷的变化影响等。

2.2隔离变压器、稳压器和滤波器组合系统

隔离变压器、稳压器和滤波器组合系统是计算机房多采用的一种配电系统。该系统消除电网中的瞬变干扰、较大负荷的启动和制动、电压波动及电磁干扰等。该系统优点是价廉、运行可靠、维修方便、运行费用低等。它的缺点是在电网的较大频率波动时和忽然停电等电源污染没有防护。

2.3不间断供电电源

不间断供电电源(UninterruptablePowerSupply,简称UPS),它是电力变流器、储能装置(蓄电池)和开关组合成的一种电源设备。不间断供电电源具有稳压、稳频、抗干扰、防止浪涌等功能。而且,当发生忽然停电时,不间断供电电源可以对用电设备继续供电一段时间,使人们能及时处理计算机等设备中内存的信息,或者立即启动备用电源,使计算机等设备继续工作。

2.4瞬变浪涌保护器(Transientvoltagesurgeprotector)

暂态过电压是配电系统中最常见的干扰形式,雷电仅是一种;主开关操作、无功补偿电容器及电梯等重负荷设备的投入和切除,都会产生暂态过电压。大部分过电压的产生带有随机性和重复性,往往伴随电网中其它干扰发生而产生。上面的几种供电系统,包括稳压电源和不间断电源均不能消除过电压,因为稳压电源和不间断电源对快速脉冲过电压不能及时反应,甚至会将稳压电源和不间断电源损坏。因此,必须采用瞬变浪涌保护器,来保障电子设备免受暂态过电压的干扰和侵害。

2.4.1高频信号保护器

高频信号保护器主要防止天线的雷击和感应雷击,因为天线受雷击或雷电感应时,天线对偶极子上都将形成对地的暂态过电压,天馈线上两极导线上的暂态过电压是对共同地的,即形成共模暂态电压。高频信号保护器其内部采用特制的电感线圈,线圈两头并接于馈线上,中心抽头接地。在正常工作时,由于信号频率高,并接在信号线两端电感线圈呈高阻抗,不影响正常工作。当出现暂态过电压时,形成的暂态过电流经电感线圈两端到电感中心入地,线圈两半处于并联工作状态。由于暂态过电流流过两半线圈时,在两半线圈中产生的磁通量相互抵消,暂态过电流对地呈低阻抗,从而有效地限制信号线对地的共模暂态电压幅值。高频信号保护器主要用于防护雷击或雷电感应引起的天馈线对地的共模暂态电压幅值,从而保护通信设备免受暂态过电压侵害。

2.4.2电源过电压保护器

雷电及其它瞬变浪涌冲击现象,对精密电子设备和计算机设备(包括UPS电源),造成很大的危害。电源过电压保护器是利用快速响应模块,通过其优良的非线性伏安特,来实现抑制暂暂态过电压的。在正常工作时,模块呈高阻抗特性,泄漏电流很低,不影响正常工作。当出现暂态过电压时,模块呈低阻抗特性,使暂态过电流迅速泄放,从而抑制暂态过电压,维持电压稳定。

2.4.3采用等电位联结

直流稳压电源的设计范文篇8

一、整流模块

整流模块的维护措施包括三个方面。一,提高模块的输出能力。整流模块的标定电流值与其实际输出能力之间存在一定的差异,因此确定整流模块的输出能力要综合考虑其运行环境、元件的使用时间等。控制整流模块的满负荷运行状态,增加模块备份,对模块内部积热进行处理,确保其输出能力。二,对通信机进行定时清洁,包括除尘和防潮。模块表面灰尘过多会影响其正常散热,容易导致温度升高,影响系统的运行稳定。防潮可通过建立密闭空间来实现,对地势较低的基站,还要考虑雨水对其干燥度的影响,对地势低的基站进行垫高处理,防止雨水带来设备短路。三,合理设置接地电阻值,并认真检查接地系统。在过压保护的基础上进一步确保系统电流输出稳定。防止高压带来的整流模块损坏。

二、交流配电单元

交流电源是基站电源系统的主流电源,使用交流电源能够确保稳定的电源输出,但需要对其配电电源进行合理的监控与设置,主要是针对安全预警值范围的设置。交流配电单元的系统维护主要是确保其电流运行稳定,合理设置电压输出,并在必要的位置设置安全预警。根据当地用电需求,正确设置预警范围,减少由于电压波动而造成交直流的频繁切换,影响设备的安全性。交流配电单元的稳定运行与预警值的设置有密切的关系,对于偏远地区等电流不稳定现象,要对系统默认的预警值进行调整,安装稳压装置,确保配电单元的运行稳定。

三、蓄电池保护

蓄电池的安装、输出电压范围以及负载能力均需要维护。维护措施如下:其一,要合理安装蓄电池,安装力度适中,搬运要小心,防止蓄电池受到挤压而造成破损。蓄电池的安装位置应选择干燥、通风且远离阳光直射点的地方,空气湿度、温度都会影响蓄电池的稳定性和使用寿命。温度越低,容量越小,反之则内阻就越大,从而影响蓄电池的存放。其二,保持蓄电池良好的使用环境,使用合理的浮充电压。移动基站电源系统的输出精度低,会对输入电压造成较大影响,使其出现较大范围的波动,缩短使用寿命。当长时间使用低电压或高电压运行时,蓄电池内部会发生硫化或极板老化,甚至导致脱落,要解决这一问题要求基站工作人员严格按照蓄电池的规定浮充和均冲电压进行设置,不能以开关电源厂家所提供的出厂设计值来进行充电。其三,是通信电源的带负载能力保护。要求维护人员对出现负载变化的整流模块电压进行调整,检查蓄电池的浮充电压,确保其在正常的使用范围之内,在这一过程中还要保证整流模块输出电流一直,以避免模块处理不均一个像正常运行。

四、集中监控装置

从某种意义上讲,集中控制是当下基站电源系统管理的主要手段,也是未来发展的一种趋势。因此,通信电源的制造厂商也开始将设计中心转向电源监控装置。电源种类增多,监控模块和电源监控设备也存在差异,给基站人员的维护工作带来了麻烦。针对这一问题,要对集中监控进行合理的设置,要求运营商对其产品端口进行进一步完善与修改,亦可采取错开通信基站的具体检修实现来统一电源监控设备的目的。但在实际生产过程中,不同生产厂家的监控模块在性能上、设置上存在一定的差别,要求基站选择市场上较为成熟的监控技术,并且对于同一基站,要尽量统一使用统一厂家的监控设备,并对其进行使用前的调试。并且要充分掌握不同电源厂家通信电源的传输规约,由此设置一些再硬件活软件设备,以实现统计性能,统一监管,确保基站电源的稳定运行。

直流稳压电源的设计范文篇9

关键词:单片机80c31数模转换器dac0832三端集成稳压器

1数控直流电源的应用及特点

本课题研究一种以单片机为核心的智能化高精度简易数控直流电源的设计。数控直流电源是一种常见的电子仪器也是电子技术常用的设备之一,广泛应用于电路,教学试验和科学研究等领域。以单片机系统为核心设计的新一代数控直流电源,它不但电路简单,结构紧凑,价格低廉,性能优越,而且由于单片机具有计算和控制能力,利用它对数据进行各种计算,从而可排除和减少模拟电路引起的误差,输出电压和限定电流采用输入键盘方式,电源的外表美观,操作使用方便,具有较高的使用价值,且兼备双重过载保护及报警功能,特别适用于各种有较高精度要求的场合。

2硬件电路的设计

2.1数控直流电源的组成简易数控直流电源由稳压电源部分、数字显示部分、输出部分、数控部分、“+”“-”按键五部分组成。

2.2单元电路的设计

2.2.1输出电路输出电路是由三端固定输出稳压器件7805、运算放大器a和dac电路所组成的输出电路。在该电路中u23=5v,uo=u23+u3,若dac的输出为-5v~+4.9v,则uo=0~9.9v。该电路的稳压性能7805保证,步进电压由dac输入的数字量控制。这种电路输出电压的精度取决于7805输出电压的误差;运放的跟随误差以及dac的积分非线性。步进值的误差直接与dac的位数有关。

2.2.2数控部分数控部分应具备的功能有:输出电压可预置,且能以“步进”或“扫描”的工作方式加(“+”)或减(“-”)。数控部分的输出应直接控制数码电阻网络各个开关。

微控制器(mcu)又称单片机,数控部分为mcu电路。mcu的芯片品种繁多,芯片的选择应考虑价格,软件成熟,满足功能要求等因素,因此本设计选用80c31单片机。

两位bcd码拨盘开关将预置量输入到mcu并口,两位led显示电路由mcu串口送入数值(输出电压)。单独设置的“+”“-”二个按键由并行口进行检测。dac接收mcu数据总线传送的数据,并据以确定输出电压。在软件的控制下,mcu开机后先将预置值读入,在送去显示的同时,送入dac,并产生相同的输出电压。然后不断循环检测“+”“-”两键是否按下。若检测到有键按下,将使显示值和输出电压相应增减0.1v。若检测到按键时间超过0.5s,则认为需连续增减,即处于“扫描”方式。

由于80c31片内ram仅有128b容量不够所以要扩展片外ram,因此由80c31、74ls373和8kb容量的2764组成mcu最小系统。

2.2.3稳压电源从电路简单、经济考虑,本设计采用三端固定输出集成稳压器。采用7805、7815、7915作为它们的输出电压分别为+5v、+15v、-15v,输出电流为1.5a。

直流稳压电源采用桥式全波整流,单电容滤波,三端固定输出集成稳压器件。输出电路由7815提供+15v电压,从而大大提高了电压调整率和负载调整率等指标。

2.2.4显示电路显示电路由两个数码管和两个74ls164组成。两个数码管分别组成显示电路的十位、个位,由于两个数码管至少需要14根i/o线,为节约资源,采用串行输入并行输出的74ls164进行驱动输出。单片机的两个并行分别作为信号输出口和时钟控制信号。采用单片机的p3.2、p3.3作为控制加减的控制。该实现方式是通过80c31串行输入,再并行输出到74ls164,再经过74ls164并行输出到数码显示管。

显示方式采用静态显示方式,80c31串以移位寄存器来驱动两位led共阴极数码显示器,占用资源少,仅二根线。

3软件设计

两位bcd码拨盘开关k3、k4,用以设置输出电压。k3、k4输入的p1口由电阻网络rn上拉。设置为低电平有效。“+”“-”键由10k电阻上拉,低电平有效输入至p3.2和p3.3口线。软件采用查询方式访问这两个键。

3.180c31资源分配

txd、rxd以串口方式0输出接移位寄存器/显示器。

p3.2“+”键

p3.3“-”键

p0.0~p0.3预置数bcd码输入(低位—十分位)

p0.4~p0.7预置数bcd码输入(高位—个位)

fffehdac地址

42hd输出电压数值寄存

41h40h显示缓冲寄存,bcd码。

3.2程序流程设计复位后首先进行初始化工作,然后从bcd拨盘开关取输出电压预置值,经取反和十—二进制数转换后存入寄存器42h。预置值经串口输出送往显示器。由于输出电压数值是以0.1v做为基本单位的(即5v为50),所以送往显示的数值自动在高位加入小数点。以后输出电压值经标度变换后送dac,由输出电压形成对应的输出电压。

程序将检测有无键按下,若无键按下,则不断地继续检测,直到有键按下。检测到有键按下后,首先延时20ms进行去抖处理,再判别是“+”还是“-”键若为“+”键,则42h中的数据加1,再判断是否已加至100,若是则42h复0,否则将数据送去显示和输出。若判别为“-”键,则数据减1,再判断是否已减至ffh,若是则42h赋值为99;否则将数据送去显示和输出。

只要点动“+”“-”键的时间小于0.5s,则每次步进增减0.1v。若一直按键,只要时间超过0.5s,则不停的步进,直到松开按键为止。

4结论

本设计主要对简易数控直流电源电路进行了简单的设计与阐述。本设计系统主要由硬件部分和软件两部分组成,以单片机为核心,控制整个电路工作。数模转换器和集成运算放大器构成的具有深度负反馈的数字式可控直流电源。

本设计还存在许多不足,不当之处在所难免,望广大读者提出意见。

参考文献:

直流稳压电源的设计范文篇10

关键词:仿真电源Protel99

中图分类号:TM1文献标识码:A文章编号:1007-3973(2010)04-066-01

1前言

直流稳压电源是能够保证在电网电压波动或负载发生变化时,输出稳定的电压的常用的电子设备。它广泛应用于仪器仪表、工业控制及测量领域中。故设计、制造一个低纹波、高精度的直流稳压电源在电源技术中占有十分重要的地位。采用电路设计仿真工具对直流稳压电源电路的设计理念和输出进行仿真验证是提高设计质量、降低研制成本、缩短研制周期的有效手段,在电源设计工作中有着重要的实际应用价值。

仿真即对所设计的电路板进行电器特性的分析,检验其是否符合设计者的要求。如果没有防震功能,在设计阶段就无法检验设计的好坏,只能进行无力的实验,这样,一旦设计阶段出现重大失误,那么一切只能重新再来,造成时间和物质上的极大浪费。对于复杂的电路设计来说更是如此??。

Protel99SE系统提供了强大的电路仿真功能,能够提供模/数信号的混合电路仿真,本文利用Protel99SE软件模拟设计并仿真了直流稳压电源电路,理论计算了该电路的主要参数,模拟分析了该电路工作过程,仿真计算了该电路工作状态,直观地验证了理论分析的结果,并得到相关结论。

2理论分析

直流稳压电源电路如图1所示,其中仿真信号源为频率为50Hz,幅值为311V的正弦波信号,三极管电流放大倍数为205,稳压管D2稳定电压6.8V,其他参数如图所示。

图1直流稳压电源电路图

该电路理论计算如下:

(1)输入电压:

(2)经变比为5:1的变压器变压后,变压器副线圈两端电压:

(3)经D1全桥整流后,再经C1滤波后,由经验公式??估算电路两端输出电压平均值应为:

(4)由于稳压管D2稳定电压为6.8V,故三极管基极与集电极电压即电阻R1两端电压为:

(5)三极管工作在线性放大区,故输出电压为:

3计算机仿真结果

图2输入波形图图3a、b两点电位波形图

图4c点电位波形图图5输出电压波形图

由以上分析结果可以看出:计算机仿真计算的结果中图3与理论计算中的相符合,图4与理论估算中的相符合,图5与理论计算中的相符合。

4结论

(1)计算机仿真结果不但结果更精确,而且速度非常快,大大减轻了电子线路设计人员的计算强度,尤其在需要经常改变电路元件参数时或计算复杂电路时,计算机仿真计算的快捷、方便、精确的优越性就更显得突出。

(2)利用计算机方针软件设计分析电子线路可以省去很多新产品调试时间,也可以及时发现设计中的错误,避免浪费,即节约了成本有提高了效率。

(3)利用Protel99SE软件对一个电路进行仿真时,一般步骤是先放置信号源,再设置好自己想要仿真的内容,最后启动仿真程序,输出结果。

(4)计算机仿真结果与理论计算结果很接近,直观的体现了理论计算结果。因此,计算机仿真电路的技术具有很强的实用性。

(项目基金:辽宁省教育厅科研项目2009A788)

注释:

直流稳压电源的设计范文

【关键词】电子技术;数控直流稳压电源;设计方案

电源是保证电力电子设备持续生产提供电能的设备,电源电路中一般包含多个单元电路和系统电路,在诸多的电源中,使用的最为广泛的是直流电源。直流电源的获取方式,一般可以分为以下两种:第一是将电池作为直流电源,第二利用交流降压和滤波电流将交流电进行转换,使其成为直流电源。如今所使用的各种电源几乎都能够达到同时获取几个不同电压等级的要求,基于这种情况,数控制流稳定电源又成为了人们使用的最大需求,其能够通过电压的调节提供稳定的电压,而且能够将电压的精度保持在一个较高的水平内,这样便有效的提升了电源的使用质量,因此数控直流稳压电源的设计也受到了越来越多专家学者的重视。笔者认为,数控直流稳压电源的设计方案可以从以下几个方面考虑:

1.直流稳压电源方框图

在图1中所显示的是使用交流电压和滤波电流的方法转换而获得的直流电源,从中也可以看出,这一电源电路中包含的主要部分有减压电路、整流电路、稳压电路等,这些功能共同组成了直流稳定电流。通过上述方框图中的程序,便能同时形成多种直流电压形式,并且在不同的直流工作电中产生的抗压等级也有着一定的差异,因此,其能够同时满足多种不同电力电器设备对工作电压的需求。

1.1降压电路

降压电路的主要功能是为了实现高压电的降压,为直流工作电压的形成奠定基础。

1.2整流电路

整流电路是整个电源电路的核心部分,其主要的功能就是将交流电压通过整流二极管的作用,转化为单向的脉冲直流电压,该转换步骤是实现交流与直流转换的关键部分。

1.3滤波电路

通过上述整流电路转换,输出的电压是单向脉冲星直流电压,该电压不能直接为电子电路提供直流电流的需要,因为其中含有较多的交流成分,这就需要通过滤波电路对其进行过滤,这样才能获得可以直接用于电路工作的稳定工作电压。

1.4抗干扰电路及保护电路

在一般情况下,抗干扰电路具有多方面的功能,其中最为重要的就是具有较强的抗干扰作用,能够有效的防止交流网中的高频信号进入到整机电路中,防止其对整机电路的稳定性产生影响。同时,抗干扰电路的另一个重要作用就是对整流二极管的保护作用,能够在系统开始运行时防止大量的电流对整流二极管产生的冲击作用,有效的增强二极管工作的可靠性,这种抗干扰作用的实现需要使用小容量电器实现。

1.5保护电路

保护电路中包含了很多种了,其中电路电源中的保护电路对于电路整体的运行都有着十分重要的影响,在大多数情况下都需要使用电路电源来实现保护动作,从而保证电路电源工作的稳定性。

1.6稳压电路

稳压电路的功能通常需要利用基层稳压器来实现,在集成稳压器中又分为三端固定式和三端稳压电源两种方式。

2.直流稳压电源设计电路

在直流稳压电源设计中,主要是为了实现稳压电源在电路中的保护作用,并且实现对其他集成电路的持续供电,因此对于精密度的要求可以适当的降低,基于上述要求,在本次设计中使用三端固定式稳压电路便能够满足基本的设计和使用需求,同时也能够时电路的设计更加简便。

要完成D/A的转换以及有效的运算,必须要在以正负电源同时供电作为基础,因此选择15V供电电源。在数字控制电路中要求使用5V电源,可以通过7805集成三端稳压器组成的电源实现。在该电路中,变压器使用的是双抽头的18V变压器。可以输出两路的18V交流电压(变压器的选择一般的标准足:输出电压若要满足U0≥12V。则变压器次级输出的电压一般应需要满足Uo+2V;输出电压若要满足U0≤12V。则变压器次级输出的电压一般应需要满足=U0)。

3.数显电路

在该设计思路中,从计数器的输出端输出的信号通过翻译,进入到译码器的输入端,通过译码器外部的显示器便能够实现数字显示功能。本次设计中使用的是七段译码器,其能够通过信号的输入和输出来实现LED显示器实现对线路的显示和控制。从整个电路的使用需求来看,这里应当使用的输入译码器为BCD码较为科学,其在功能实现方面更加方便,也能够提高LED显示的稳定性。

4.输出电路

在系统的输出电路中,一般包括模拟加法器和电压跟随器两个主要部分。当电压通过输入端进入到模拟加法器中,一部分作为小数位的电压值,另一部分则作为十位上的电压值,不同的电压值同时存在于加法器内进行模拟计算,计算的结果以电流的方式输出,但是这时输出的电流较小,无法满足外用驱动设备的需求。因此,在加法器进行运算之后,还需要将输出的电流进行扩大,这样才能够满足电子电器设备的使用要求,对电流放大的功能可以利用模拟加法器中的集成运算放大功能来实现。

5.D/A转换电路

不同的级别输出电路有着不同的运作方式,其通过对电阻的调节来实现输出电压的控制,在每一级的DAC0832电路中都存在着多种树木模式,不同的数位连接方法也有着较大的差异,所以要通过调整端的作用来实现对启动速度和动态抗阻的有效调节,保证其稳定性,才能将该电压作为基准电压电源。

6.计数器电路及控制电路的设计

计数器电路的主要功能体现在将输入的数字值进行D/A转换之后完成整个电路的转换,这也是实现数控功能的急促航和前提。而控制电路的实现,则是通过对控制器的控制来实现的,一般利用“+”“-”键对电压的大小进行控制,同时实现不同档之间的转换。

参考文献

[1]马花萍.低成本数控直流稳压电源设计[J].科技信息,2012(19).

[2]周述良,张玉平.数控直流稳压电源设计[J].现代电子技术,2011(16).

[3]傅莉.数控直流稳压电源设计[J].电子科技,2010(11).

作者简介:

直流稳压电源的设计范文篇12

关键词:开关电阻可调恒流负载数字控制

中图分类号:TP368.1文献标识码:A文章编号:1007-3973(2013)008-115-03

1系统方案

1.1具体指标如表1

1.2恒流电子负载电路方案

方案一:BOOST拓扑构成的恒流电子负载。如图1所示,在特定的输入电压下,通过调节BOOST电路的PWM信号占空比可以使得输入电流发生改变,通过闭环控制可以达到恒定BOOST电路输入电流的目的。这样,BOOST电路充当了一个恒流负载。该方案的优点是恒流负载的输入电流波形较好,对被测稳压源的影响较小;要求的输入电压可以做到很低,从而适应被测电源电压的范围很宽。但缺点是开关管的电压电流应力较大,控制上不易稳定。

方案二:基于开关电阻的恒流电子负载。如图2所示,开关S和电阻R构成开关电阻,特定直流电压Vi加在开关管电阻上,调节PWM信号占空比可以调节电路的输入电流,通过闭环控制,可以实现输入电流的恒定,输入电流波形如图3。该方案具有电路结构简单、控制方便、成本低廉、工作可靠等优点。可以直接发出PWM低电平封锁开关管实现0输入电流的目的。缺点是输入电压必须不低于某一特定的值才能正常运行和保证控制精度。由于有先进的单片机、AD芯片、电流检测芯片等,通过电路参数的合理设计,可以将这些问题的影响降到最低。

综上,我们选方案二。

1.3控制方案

对于开关电阻的控制可以采用模拟电路进行调制和控制,具有模拟控制的快速性、连续性等优点,但模拟电路的功能较单一,不便于实现课题要求的多功能化。所以,为实现不同的恒流目标值的设定、稳压源的负载调整率的自动测试、系统保护等功能,控制上采用单片机为核心的数字控制如图4所示。通过检测恒流电子负载输入电流Ii,并将其与给定值进行比较,经数字PI调节后输出相应占空比的PWM信号驱动开关管,从而实现闭环控制达到题目的要求。

1.4检测方案

1.4.1电流检测方案

方案一:采用电流霍尔传感器。应用霍尔效应闭环原理的电流传感器,能在电隔离条件下测量直流、交流、脉冲以及各种不规则波形的电流。但霍尔测量精度不能满足本设计精度的要求,且价格昂贵。

方案二:采用电流并联监控器INA282。INA282是TI公司提供的电压输出电流并联监控器,此监控器能够感测共模电压上-14V至+80V的压降,与电源电压无关。零漂移架构的低偏移使得电流感测在整个分流器上的最大压降低至10mV的满量程。特点:宽共模范围:-14V至80V;增益误差(最大值)、偏移漂移、增益漂移小。

综合系统的要求,本设计选择INA282为主要器件构成的检测电路取样电流。

1.4.2电压检测方案

方案一:采用电压霍尔传感器。应用霍尔电压传感器,能在测量直流、交流、脉冲以及各种不规则波形的同时实现电气隔离。但采用霍尔器件的缺点是价格比较高,易受电磁干扰影响,必须采取特别的电路措施防止温度、电压的变化所造成的漂移。

方案二:利用电阻分压取样电压。用电阻分压取样电压,此电路设计简单易于实现,选取适当的电阻值即能满足要求。

综上,本设计选用电阻分压网络取样电压。

2理论分析与计算

2.1恒流电子负载电路的主要器件参数计算

2.2检测电路的设计与参数计算

3电路设计

主电路如图8。

4结论及性能分析

经过测试可知,本系统可达到以下指标:

(1)电流变化在100mA~1000mA可实现恒流,且恒流精度小于1%。

(2)具有过压保护功能,大于18V时报警并封锁PWM信号。

(3)能实时测量并显示电子负载两端电压、流过电子负载电流,测量精度均达到发挥部分要求。

(4)具有直流稳压电源负载调整率自动测量范围,达到发挥部分要求。

综合分析各项指标的测试结果并与设计指标进行比较发现,本系统的各项设计参数均能达到设计指标。

参考文献:

[1]吴文进,江善和,任小龙.直流电子负载的设计[J].常熟理工学院学报,2011(4).

[2]杨长安,王蔚,赵亮,等.基于反馈控制的恒流型电子负载的实验研究[J].现代电子技术,2006(14).

[3]刘树林,刘健.开关变换器分析与设计[M].北京:机械工业出版社,2010.

你会喜欢下面的文章?