高分子材料的性能特点范例(12篇)

来源:收集

高分子材料的性能特点范文篇1

1紧扣专业知识特点,构建专业知识体系

虽然过程装备工程材料课程的教学内容主要为机械类,但是其多涉及到压力、高低温和腐蚀等工艺情况,在材料应用方面和传统的机械制造有很多不同之处。例如在过程装备工程材料课程中,讲解了黑色金属在机械零部件、腐蚀工况与压力容器等工况下的应用;在复合材料、有色金属、高分子与陶瓷等性能与应用方面,过程装备工程材料课程着重强调其用材特殊性,如高分子材料的耐腐蚀性等。在机械制造中,着重讲解了工艺设计与工件选材,以及不同工程材料在行业中的应用,如化工行业等。过控专业知识体系与传统的机械专业并不相同,过控专业教学主线主要为压力管道、耐腐蚀构建、耐温构件与压力壳体等,而传统的机械专业教学主要为机械部件的用钢,如果在过程装备工程材料课程的教学采用机械专业知识的框架结构,学生无法建立过程装备工程材料课程的知识框架,也不利于课程选择正确教学材料。过控专业的课堂教学内容与教学大纲需要摆脱机械专业的框架束缚,紧扣过控专业的特点,帮助学生构建专业知识体系。由于工程材料主要应用于过程装备,所以在机械零部件的用钢方面,需要突出化工机械零部件的重要性,而轴承和弹簧钢不是重点,过程装备的用钢框架应以耐腐蚀、高低温和压力壳体的用钢等为主构成框架。材料性能也需要强调过控专业特点,如耐腐蚀、耐高温及焊接性能等,以便于学生更好地理解与掌握。过程装备工程材料课程的教学内容复杂且分散,名词与概念术语较多,课时也有限,所以在教学内容的组织上需要构建完善的体系框架,以免使学生感觉主次不分,课程的系统性不强。教师可以依据材料共性与特性、基础与应用之间关系,合理构建体系框架。例如在讲解高分子材料时,教师需要先讲解其使用时的共性,如刚度、温度上限、强度与耐腐蚀上比钢铁较低;讲解不同的高分子材料时,需要着重突出材料特性,如PA耐磨特点,以及F4、PP与PVC温度时的使用上限等。

2紧扣专业课程特点,掌握基础理论知识

过程装备工程材料课程与机械设计、机械制造和材料力学等课程在教学内容上有部分重叠,例如与材料力学课程中的拉伸实验等存在重叠情况;与机械制造中工艺性能存在重叠情况等。这些课程中包含的工程材料教学内容主要有如下特点:

①每个课程中的工程材料无法自成体系,只重点讲解与专业有关的内容;

②工程材料的教学知识深度与广度有限,只是从课程对象需要的材料性能出发,并没有进行材料学方面的讲述,学生无法真正理解;

③材料性能与应用对象的特性结合比较紧密,学生比较容易理解。为了平衡好过程装备工程材料课程与其他课程之间的关系,起到其应有的作用,教师需要在教学中做好三个方面的工作:其一,构建过程装备工程材料教材基本框架,帮助学生明确教学内容与基础知识,将各专业课程中分散的知识有机结合起来。其二,教师需要在工程材料教学中把握专业特点,注重基础知识与材料理论的讲解,帮助学生真正选择教学内容时的本意,为学生的后续学习打下坚实的基础。例如对于压力壳体的用钢需要满足低碳要求的原因,教师需要指导学生从过程装备和材料学等不同角度进行分析,而不仅仅只是让学生了解压力壳体的化学成分、性能与用钢牌号。教师通过这样的讲解,既可以突出工程材料专业的特性,又可以帮助学生更好掌握基础知识,提升学生学习的兴趣。其三,教师需要注重工程材料与其应用对象之间的相互结合。在过控专业的课程体系中,工程材料主要是为其他的课程提供工程材料方面的知识,以便可以帮助学生实现按照机械设备的化工工艺、设备型式及规格等,合理选择工程材料,并通过对材料性能的分析,实现整机设计的目的。学生只有在进行工程材料的学习时,了解其应用对象,并把握应用对象与课程之间交叉的程度,才能真正明确工程材料方面的问题,并做好材料工程与后继课程的深入学习。

3结束语

高分子材料的性能特点范文篇2

关键词:高分子材料;化工材料;发展现状

我国自上世纪80年代以来,开始致力于高分子化工材料的研发,并且将高分子化工材料用于多种领域,满足了节能减排、高性能高科技等现代社会发展的要求。除了本文主要介绍三种材料以外,我国在烯类单体聚合、a―烯烃的聚合、乙烯基单体的光聚合与光刻胶等方面也取得很大的研究成果,随着现代科技的发展以及社会发展的进一步需求,高分子化工材料将得到进一步的开发研究,并广泛的应用于农业、工业、医学、生物、能源等领域。高分子智能材料已经成为材料科学发展的一个重要研究领域,全世界各个国家科学家都在为此作不懈的努力。从人类历史发展来看,任何一种重要材料的发明和利用,都能够把人类改造自然,创造社会的能力提高到一个新的高度,并给社会生产力和人类生产生活带来巨大的影响,使人类的物质文明建设和精神文明建设共同向前推进一大步。所以可以肯定的说,未来将会有更多更好更实用的智能材料出现在我们的面前。

一、高分子材料概念描述

所谓高分子材料是指由许多重复单元共价连接而成的,分子量很大的一类分子所组成的相关聚合物,并且具有粘弹性。高分子材料正在向以下几方面发展:高功能化,高性能化,复合化,精细化和智能化。鉴于此,我国的高分子材料在进一步开发通用的基础上,应该重点发展高分子材料品种、提高技术水平、扩大生产以进一步满足市场需要。天然高分子是存在于动物、植物及生物体内的高分子物质,可分为天然纤维、天然树脂、天然橡胶、动物胶等。合成高分子材料主要是指塑料、合成橡胶和合成纤维三大合成材料,此外还包括胶黏剂、涂料以及各种功能性高分子材料。合成高分子材料具有天然高分子材料所没有的或较为优越的性能,较小的密度、较高的力学、耐磨性、耐腐蚀性、电绝缘性等。

二、高分子材料的应用分析

(一)聚烯烃材料

聚烯烃是高分子化工材料中用量最大的,也是应用范围最广的一种,主要在汽车、建筑、家电等领域得到广泛的应用。聚烯烃是烯烃的聚合物,是由乙烯、丙烯1-丁烯、1-戊烯、1-己烯、1-辛烯、4-甲基-1-戊烯等α-烯烃以及某些环烯烃单独聚合或共聚合而得到的一类热塑性树脂的总称,主要通过高压聚合或者低压聚合如溶液法、浆液法等方法生产合成,主要品种有聚乙烯以及以乙烯为基础的一些共聚物、聚丙烯以及以聚丙烯为基础的丙烯共聚物。具有容易加工、综合性能良好、原料丰富,价格低廉等优点。目前,各研究机构正在研究使用过渡金属做催化剂,进行各类烯烃的聚合。近年来,随着节能减排、低碳经济以及可持续发展思想的深入,聚烯烃的合金化、高性能化和多样化成为研究的方向和重点。

(二)高分子智能材料

高分子智能材料是通过有机和合成的方法,使无生命的有机材料变得具有生物功能的一种材料。其功能可随外界条件的变化而有意识地调节、修饰和修复。形状记忆高分子材料是指在一定条件下赋予高分子材料的起始装态,当外部条件发生改变时,它可以改变成相应地形状,并能固定其形态。当外部条件再次发生改变时,智能高分子材料以特定的规律和方式再一次发生变化并恢复至起始态。从而完成从起始记忆态到固定变形态再到恢复起始态的循环过程。自行调温调光的新型建筑材料,成分是由水和聚合物构成的。在低温时聚合物是成串排列的,为透明状,能够透过90%的光线。加热时,这种聚合物就以纤维的形式聚合在一起,成乳白色,能够阻挡90%的光线。并且这种可逆过程是在两三度温差范围内完成的。具有传感功能的高分子材料,这种与传感器结合起来的高分子材料,已成为智能材料的一个新特点。例如,装有压电陶瓷传感器的机器人,可以灵敏地感觉到轴承脱离时摩擦力突然变化的情况,并迅速作出握紧反应。

(三)稀土催化材料

稀土元素具有独特的化学性能和物理组成,以稀土元素为基础的稀土功能材料在信息、生物、新技术、新能源以及环境保护等现代科学技术和现代工业发展中起着十分重要的作用,稀土催化材料比传统的贵金属催化材料相比,具有资源丰度高、成本低、生产工艺水平高以及性能优越等方面的优势。稀土催化材料不仅能够提高生产效率,最重要的是能够节约资源和能源,进而减少环境污染。上世纪60年代,中科院长春应用化学研究所运用稀土化合物组成新型催化剂用于二烯烃的聚合以及橡胶的制备,打破了传统的Z-N催化剂,取得重大研究进展。目前稀土催化材料大量运用在能源环境领域中,如汽车尾气净化、工业废气以及人居环境净化等方面。

(四)生物医用材料

生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。高分子合成的生物医用材料通过分子设计和聚合,能够获得具有良好物理性能和生物相容性的生物材料,其中高分子软材料常用做为人体软组织如血管、食道和指关节等的替代品。合成的高分子硬材料可以用作人工硬脑膜、笼架球形的人工心脏瓣膜的球形阀等;液态的合成材料如室温硫化硅橡胶可以用作注入式组织修补材料。

三、结束语

新型高分子材料对人们的日常生活和工作产生越来越大的影响,本文从几个方面介绍新型智能高分子材料。主要包括高分子材料的含义,发展现状和高分子材料的应用等几方面内容。作为一种与国民经济、高科技技术和现代化生活密切相关重要的材料已经在各个领域中发挥了巨大的作用,人类已经进入了高分子时代。

参考文献:

高分子材料的性能特点范文篇3

关键词:导电高分子纳米复合材料应用

确切来说,聚乙炔具有导电功能的发现是在上个世纪的1977年,距今也才四十五年的时间;而纳米技术融合到导电高分子技术中的发展更短,不到二十年的时间,在这么短的时间里,导电高分子的研究已经取得了飞跃的发展,同时导电高分子材料也被应用在了众多的领域众多的产品中,给我们的生活生产起着重要的作用;从这项技术的发展中可以看出,其应用的背景远不止目前这些。顾名思义,导电高分子中纳米复合材料应该具备有两个特点,一个是纳米功能,另一个是导电性;本文主要探讨导电高分子技术中的纳米复合材料的应用现状,同时对其发展略表看法。

一、导电高分子中纳米复合材料的应用

在导电高分子技术领域中,纳米复合材料的优点非常多。从产品的特点来说,其具有高弹性、高可塑性、低密度、耐腐蚀性、质量轻、柔软和加工性能好等特点,另外其电导率的范围非常宽,具有半导体的特点;从经济层面上来说,这种材料的价格也很便宜。导电高分子材料包括纳米复合材料的经济利用价值非常高,其不仅在我国经济生产中具有重要作用,在进行科学实验中也是意义重大;在这样的时代背景下,其商业价值已经不用明说了。目前,不仅是科学研究机构,就连很多企业都已经开始进行纳米复合材料的研究工作了。具体来说,导电高分子的纳米复合技术和材料的应用包括:

1.在电子元件特别是在晶体管和二极管上的应用

纳米复合技术及其产品在电子器件中的应用非常广泛(其他的导电高分子技术在这方面的应用同样非常广泛),且从目前的形式来说,其应用前景仍然非常大。在上世纪聚乙炔的导电性能被发现后,人们很快就在导电聚合物的基础上研究出了一种可以弯曲并且也非常薄的电子元件,这种电子元件就是发光二级管;发光二级管的出现意义非常重大,其象征着导电高分子向着实用化迈出了第一步。另外,导电高分子很快也应用到了场效应管中,这种应用很有可能会带来下一步高分子材料的规模性应用。另外,纳米复合技术及其材料还被应用到了高分子的发光二极管中,这项应用时至今日仍然是社会讨论和研究的热门课题。就目前纳米复合技术及其材料在电子器件中的应用之一“发光二极管”在性能上已经非常成熟,完全可以和那些无机的发光材料相提并论了。另外,除了聚乙炔,还出现了新的材料比如聚噻吩和聚吡咯,这些材料所制成的二极管都已经陆陆续续被用在商业中,制成商业产品了。纳米复合技术及其材料所制成的发光二极管在性能上相对传统的二极管而言,具有成本低、可弯曲、可调色和面积大等特点。另外,纳米复合技术及其材料已经进入到电子器件的寿命和发光效率的研究领域了;这表明这种先进的科学技术的应用领域将会更加巨大,另外,这项研究也是实现导电高分子技术更加实用化的有效途径。

2.在电磁屏蔽领域上的应用

在导电高分子技术出现之前,人们用来对电磁进行屏蔽的材料一般都是铜,这种屏蔽材料和方法自身在性能上的不足导致了电磁干扰的情况非常严重;另外,使用铜来进行电磁的屏蔽并不能很好地满足手机、电脑、电视机、计算机房和一些医疗设备比如心脏的起搏器等的需求。在对人体健康愈加重视的今天,对相关的设备进行良好的电磁屏蔽已经越来越被重视。通过对导电高分子技术的研究也实验发现,在对电磁进行屏蔽的过程中将导电高分子特别是纳米复合的技术及其材料融合在其中,不仅能够起到防止静电、对电磁进行屏蔽的特点,还具有成本低和可塑性强不受形状影响的优异性能,是一种屏蔽电磁干扰的理想材料。随着研究的不断深入和发展,目前,导电高分子中的纳米复合技术及其材料应经被应用在电脑的屏保中了,这项应用能够有效防止电脑的电磁对人体的辐射。另外,在众多的纳米复合材料之中,聚苯胺的防电磁辐射性能最受重视。

3.在电池中的应用

纳米复合技术及其材料本身具有很好的掺杂与脱掺杂性能,如果将其应用在电池中,将会带来良好的效果。目前,对于高分子材料中的聚乙炔材料电池的研究已经基本成功了,这款由日本生产出来的电池比传统的电池要更加轻便,因此受到了消费者的青睐。另外,聚吡咯也具有很好的稳定性和高掺杂度,这种材料对电的敏感性也非常高,即使是在纺织物中图上这种材料,也能让其具有良好的导电性;所以,聚吡咯正在被研究应用在对低浓度、可发挥的有机物进行监测的传感器中,这种传感器具有很高的灵敏度。另一种纳米复合材料乙烯也已经开始使用在太阳能的电池中以及二次电池中;这种材料的使用有可能会使二次电池成为更加大众的商品,但是这种材料在稳定性和耐久性中的问题目前还没有得到很好的解决。另外,导电高分子的纳米复合技术及其材料在太阳能电池中的应用也已经开始尝试了。和一般的无机光电材料比较,这种导电高分子的材料具有价格便宜、能够规模生产、制造简单和对太阳光中的物质进行筛选选择等优点,但是这种材料也具有稳定性较差、阻值比较高的缺陷。

4.在导电橡胶中的应用

导电高分子材料本身具备良好的导电性,通过不同的纳米复合技术掺杂和加工所生产出来的聚乙炔在导电性能上可以达到铜的效果,只是目前这种高分子的材料的导电稳定性不够,所以还没有被广泛使用。不过,通过纳米复合技术研究出来的导电橡胶的使用意义非常大。这种导电的橡胶在一般情况下并不会导电,不过,只要对其施加压力,就能够使其产生导电的效果,并且这种导电的效果只是出现在被施加压力的部位,没有被施加压力的地方的绝缘性能非常好。目前,这种导电橡胶已经被广泛应用在防爆开关、压敏传感器、医用电极、加热原件和高级的自动把柄中去了。

二、导电高分子中纳米复合技术的前景

虽然纳米复合技术在屏蔽电磁干扰、光电子原件、能源等方面都已经得到了很多的应用,但是其实用化还是没有得到充分的利用,甚至说其应用尚未实现实用化。目前,这些材料很多还是停留在“材料”的层面上,而产品层面还是比较少。在未来的研究工作中,主要研究的方向有:

1.对纳米复合技术及其材料在稳定性和加工型方面的研究。就目前来说,导电高分子的材料很多在导电性、加工性和稳定性的融合上还做得很不足,解决这一问题的一个比较有效的方向是对可溶性的纳米复合材料进行合成。

2.对纳米复合技术及其材料在自掺杂和不掺杂方面的研究。材料不稳定以及掺杂剂本身不稳定往往会对纳米复合材料在导电性能方面产生影响,所以对纳米复合技术及其材料在自掺杂和不掺杂方面的研究能够有效结局材料在稳定性方面存在的问题。

3.对纳米复合技术及其材料在绿色生产上的研究。这项工作同样引起了很大的关注。在研究的过程中如果能够解决导电高分子的纳米复合材料在加工上更加绿色的要求,将是一场对传统的电子元件提出挑战的革命。

参考文献

[1]王彦红,王景慧,岳建霞,罗青枝,王德松.导电高分子纳米复合材料研究进展[J].化工时刊,2007,(01).

[2]柯一礼.导电聚苯胺的研究及其应用前景[J].建材世界,2009,(05).

高分子材料的性能特点范文

【关键词】锂离子电池;电解质;正极材料

0引言

高能量密度的锂离子电池,安全性能好,低污染;随着技术的发展,锂离子电池在电动汽车和自行车领域、航天、军事等领域之中的应用越来越广泛。锂离子电池都具有非常好的发展前景。对锂离子电池的研究,了解锂离子电池的研究概况,通过技术创新,进一步降低原材料成本,提高电池循环性能及稳定性,为以后锂离子电池的发展打下基础至关重要。

1锂离子电池的研究概况

1.1正极材料的发展趋势

锂离子电池由于其采用的正极材料的不同,会使其能量密度,温度特点以及比功率特点,以及安全性能有很大的不同,已经市场化锂离子电池正极材料一般采用LiCoO2、LiNi1/3Co1/3Mn1/3O2和LiFePO4这四种。钴酸锂是市场最早的锂离子电池正极材料,具有其它材料所没有的许多优点,其比能量高,充放电电压相对稳定、循环使用性能也相对于其他大多数材料较好,所以用其作为正极材料的锂离子电池在第一代产品中就已经相对广范。但用其生产的锂离子电池的不能承受较长时间的充电过程,所以其使用安全性能是其缺点,另外,由于其造价昂贵在需要大容量锂电池的车用锂电池上很难推广使用。LiNi1/3Co1/3Mn1/3O2,它是可逆比容量最高可以达到160mAh/g的三元类材料,能够和电解液很好相容,循环性能也较第一种材料有很大发展的正极材料,其在手机电池中已经有了很长足的发展。研究表明可改变Ni、Co、Mn三种元素的比例产生多种不同的性能正极材料,满足不同类型产品的需求。LixMn2O4是一个低成本的材料,其热稳定性和抗电超过LiCOO2LiNi1/3Co1/3Mn1/3O2,3D隧道结构由于其优越的嵌入和脱嵌Li+的性能,使它在制造高功率动力电池方面被广泛的应用。但是,其相对较低的比容量,以及相对较差的循环性能,对它的发展形成很大的限制。第四种:LiFePO4。对于近几年来应用相对广泛的这种材料来说,其作为一种磷酸盐聚阴离子化合物,无论是在安全性能,还是在耐高温性能,循环性能方面,它都具有很出色的表现,在动力电池还是在大功率的车载电池方面有很好的应用潜力。它存在主要缺点是电压平台和电导率低、低温的放电性和倍率放电差。综合考虑LiFePO4一定是有较好发展前景的正极材料。

1.2负极材料的发展趋势

在当前,许多学者主要是将碳材料、合金材料钛酸锂及过渡金属氧化物等作为对立离子电池负极材料的主要研究方向。在这许多的研究当中,碳材料是最早被研究并作为锂离子电池负极材料成功运用到锂离子电池生产的材料。负极材料根据其结构特点的不同,一般可以分为三种:石墨、软碳、硬碳。其中易于石墨化的叫做软碳,难以石墨化的叫做硬碳。由于相似的结晶性能,在作为锂离子电池的负极材料时,软碳和石墨都会比硬碳更容易充电,安全性能也就更好。石墨类材料的技术相对成熟常用来作为锂电池负极材料,主要有天然石墨及其改性材料、中间相炭微球和石油焦类人造石墨等,其中中间相炭微球由于其球形的层结构使它的比容电量,安全性,放电效能和循环寿命等很多方面有很大的优势,但它的成本较高。硬碳材料首效低,压实密度低,工艺不成熟等缺点,使其至今还没有能够实现大规模的商品化,然而国内在这一领域的研究还处在试验阶段之中。锡基复合氧化物、碳硅复合材料和钛酸锂等也是当前许多学者所比较热衷的研究负极材料。钛酸锂的循环寿命十分长的优点,使其在作为锂动力电池负极材料的时候,具有非常大的优势,同时由于钛酸锂的体积变化也非常小,它也通常被称为零应变材料。在作为负极材料时,在钛酸锂和电解液间的分界面上不会出现SEI膜,并且它的内阻也不变大,所以它的安全性能非常高,另外,它的电压平台在1.5V左右的电压平台,也不会导致金属锂的析出。具有非常稳定的电压的平台,使其在作为锂离子电池的负极材料时,具有很好的耐过充性能和耐过放性能。然而,钛酸锂电极电位较高、压实密度和重量比能量较低带来的导电性和大倍率性能差,使钛酸锂在广泛的市场化前很难被广泛的应用。

1.3电解质的研究概况

目前,电解液的溶剂包括碳酸二甲酯、碳酸二乙酯、碳酸丙烯酯、碳酸乙烯酯和碳酸甲乙酯五类。目前,大多都是使用六氟磷酸锂电池电解质盐,混合溶剂,碳酸乙烯酯和脂肪族碳酸酯作为电解质。然而,对于和其他的电介质材料相比较而言,LiPF6的热稳定性和化学稳定性非常差,但是其负面影响不可以因为如何提高存储能力,进一步降低对于电池的安全性能,循环性能的忽视。因此,在研究其电解质的同时,对于新型电解质锂盐、功能添加剂的作用也需要做一个更加深入的了解,二草酸硼锂的使用已经受到了越来越多的关注。用这种盐反充电和SEI膜的电解液的阻燃效果是非常稳定。LiMn2O4在LiBOB中的分解热一般能够到达60J/g,但是LiFePO4的却更低,只有6~8J/g,它们的这些优点,可以极大的提升动力电池的安全性。所以,把LiBOB与LiPF6混合使用,就可以更好的发挥动力电池的高温循环性能,同时对于动力电池的的安全性能也会有极大地提高。

2锂离子电池的测试方法

锂离子电池的检测需要通过恒流充电、恒压充电、充放电间隔、放电和周期间隔五个i奏的检测。锂离子电池大量的检测时所选用的分选系统一般包括以下几种方法:使用三级计算机测控模式、模块化结构,这种电池分选系统具备恒流恒压充电、分段放电、自动报警等功能,可以同时检测分选数节电池。化为系统的特性分选功能和其他相比具有很特别的功能,对于挑选出来的锂离子电池,可以直接用来制作组和电池,不需要再经过其他的检测过程,成品率基本接近100%,这样检测过后对于保证产品质量,和节省人力物力会有很大的帮助。

3锂离子电池的应用前景

高分子材料的性能特点范文篇5

关键词:稀土元素;上转换发光;氟化物

中图分类号:TQ050.4文献标识码:A

引言

稀土元素作为典型的金属元素,在各种发光材料中,稀土元素构成的发光材料的优越性都远远超过其它元素。这些稀土元素都具有广阔的应用前景,可广泛应用于发光涂料、激光、通信等领域。另一方面,稀土元素组成的化合物可以与高新材料结合,形成新型工业材料。

1发光及发光材料

物质在热辐射之外以光的形式发射出多余的能量,而这种多余能量的发射过程具有一定的持续时间,这一过程就是发光[1]。

发光材料按组成可分为有机发光材料和无机发光材料。由于有机发光材料种类多,发光色彩丰富,纯度高并且可以通过设计不同的分子结构使其发光范围可调,所以在发光领域备受人们的关注。无机发光材料的物理化学性质比较稳定,最常见并且研究最广泛的为稀土发光材料。稀土发光材料的特点是吸收能力强,转换效率高,稀土离子具有丰富的能级,其4f电子在众多能级间跃迁可产生不同波段的光,尤其在肉眼可见的范围内,发射能力极强。

2稀土上转换发光及发光材料

大部分发光都遵循StokeS定律,即激发光的光子能量高于发射光的光子能量,或者说发射光的波长比激发光的波长更长[2]。遵循这一定律的发光被称为Stokes发光,或者下转换发光。所谓上转换发光是指吸收低能量光经过多光子组合而发射出高能量的单光子[3],而这种吸收光能量小于发射光能量的现象却与Stokes发光现象正好相反,所以上转换发光也称为反Stokes发光,上转换发光材料也称为反Stokes定则发光材料。

2.1稀土上转换离子

不是所有的离子都可以用作上转换发光材料的激活剂或敏化剂。理论上,除了La3+、Ce3+、Yb3+和Lu3+以外的所有镧系离子都可以用作激活剂离子。另外,一些锕系离子和过渡金属离子也可以用作激活剂离子,如U4+、U3+、Cr3+、Ni2+和Mo3+等。然而,目前研究最多的主要是镧系离子中的Er3+、Tm3+、Ho3+和Pr3+。这是因为(l)它们具有丰富的能级且亚稳态能级的寿命较长,为输出高效的上转换发光提供了前提条件;(2)它们在红外或近红外波段有很好的吸收,且与常用的敏化剂离子Yb3+之间存在高的能量传递效率,从而容易实现高效的上转换发光;(3)源自这些离子的发光受晶场的影响很小[4],均呈现很窄的谱带,非常有利于特殊领域的应用,如固体激光器、荧光/防伪探针等;(4)稀土离子的发光相对于非稀土离子来说更有利于发光理论的研究[5]。并且,激活剂离子它也可以是两种或两种以上离子,并不仅仅局限于一种离子。通过研究人员对不同激活剂离子产生不同波长发光的特性的研究,同时掺杂几种激活剂离子己经获得了包括白光在内的多种颜色的发光,并且,可以预计只要通过仔细调节掺杂离子的种类和浓度完全可以得到所有颜色发光。对于敏化剂离子而言,第一,它应该在激发波段具有较大的振子强度,或者说吸收强度,第二,它的发射光谱与激活剂离子的吸收光谱之间应有较大的光谱重叠,第三,敏化剂离子与激活剂离子之间应该存在相互作用,如电子交换相互作用或多极-多极相互作用。Yb3+是上转换发光材料中应用最多的敏化剂离子,因为(l)它在950-1000nm的近红外波段具有非常大的吸收强度,据Ribeiro报导其吸收系数是Er3+的4倍以上;(2)Yb3+只有一个激发态2F5/2,从而决定了它在离子晶格中具有非常高的量子效率,接近于100%;(3)其近红外发射光谱与主要的激活剂离子Er3+、Tm3+、Ho3+和Pr3+的吸收光谱皆有很大的光谱重叠,能够有效地吸收泵浦能量并通过电偶极-电偶极相互作用传递能量给这些激活剂离子。

上转换发光材料对基质材料的选取也有很高的要求。尽管通过增大泵浦激光功率,稀土离子在很多材料中都可以实现上转换发光,但是因为相同激活剂离子在不同基质材料中的发光强度差别非常大,最大相差8个数量级,所以为了得到真正满足实际应用的上转换发光材料,必须选择适当的基质材料。

3上转换发光材料的制备方法

以稀土氟化物为基质的上转换发光材料具有优良的光学性能,然而其制备过程复杂、成本高。随着纳米材料制备技术的发展,稀土氟化物上转换发光纳米材料的合成取得了长足的发展,涌现出了各种合成方法也。目前,具有代表性的而且应用比较广泛的合成方法主要有以下几个大类:高温固相法、溶胶-凝胶法、水热法和共沉淀法等方法。

在这些方法中,有些方法的特点是需要在合成过程中加入有机配体来调节粒子的成核、生长,从而控制粒子的尺寸、形貌以及其分散稳定性,而具体实验制备过程随着合成方法不同而各有差异且都有各自的特点。本人认为水热合成方法是一种极具潜力的合成方法,具有很大的研究空间,目前不少纳米材料的研究采用此法。

水热法是指在密封的压力容器中,以水为溶剂,在高温高压的条件下制备微米、纳米材料的一种有效的化学合成方法。

优点:具有反应温度较低,过程容易控制,利于完美的晶体的生成,并且粒径小且分布均匀,利于改善材料性能;无需煅烧和研磨,避免了晶粒团聚,减少了发光损失;环境气氛容易调整,利于低价态、中间价态与特殊价态化合物的生成,并能均匀进行掺杂。

缺点:水热合成法属于高压合成,对反应设备的要求较高,且反应不易控制,晶体的长大需要时间较长。

4上转换发光材料基质的选择

稀土氟化物具有从紫外到远红外宽波长范围的光学透过,弱的晶体场,小的折射率,特别是作为激活剂的稀土离子掺入后,由于它具有较低的声子能量,其形成晶体的温度较低,是制备上转换发光材料的理想的基质材料,氟化钆(GdF3)和氟化钆钠(NaGdF4)是一种低折射率、化学稳定性好、并具有良好的红外透射性能,其单晶体可用作光学镀膜、光纤掺杂、激光晶体、激光放大器等。其中Gd3+属于荧光惰性,是研究稀土离子光谱性质的合适基质材料。它能发射单色性好、量子效率高的红色荧光而被广泛应用到各种领域的发光材料中。

5稀土上转换发光材料的应用

近年来,稀土上转换发光材料被广泛应用于短波长激光器、光纤放大器、三维显示器、防伪技术及生物荧光探针等方面。众所周知,当今世界的主流是节能环保,我们要以此为出发点扩大上转换材料的应用范围,所以以上转换材料作为白光LED的荧光物质是个不错的选择。目前,以紫外光激发的下转换材料为荧光物质的白光LED是市场上的主打,这就存在专利垄断、荧光物质性能要求高、价格昂贵等问题。如果能够研制出白光LED用上转换荧光物质,将填补红外激发白光LED的空白,市场前景巨大。

参考文献

[1]李建宇,稀土发光材料及应用[M].北京:化学工业出版社.2003年第十版,1~6.

[2]余宪恩.实用发光材料[M],北京:中国轻工工业出版社,2008,153-155.

[3]杨建虎,戴世勋蒋中宏.稀土离子的上转换发光及研究进展[J].物理学进展.2003.23(3):284~298

高分子材料的性能特点范文

关键词:可降解高分子材料;光降解;生物降解;光-生物降解

随着经济的发展和人们生活节奏的加快,塑料饭盒、塑料袋等一次性产品开始频繁出现在人们的日常生活中,它们在给人们的生活带来便利的同时,也因其非自然降解性造成了极大的环境问题,即“白色污染”。“白色污染”既是一种视觉污染,也会影响土壤、空气、水体等的质量,因此努力合成并推广使用可降解高分子材料成为当务之急。按照降解机理,可降解高分子材料可分为光降解高分子材料、生物降解高分子材料和光-生物双降解高分析材料三大类。

1.光降解高分子材料

光降解高分子材料的特征是含有光敏基团,可吸收紫外线发生光化学反应,在太阳光的照射下,发生分子链的断裂和分解,由大分子变成小分子。

向塑料基体中加入光敏剂是目前使用比较多的制备光降解塑料的方法。光降解引发剂可以是过渡金属的各种化合物,如:卤化物、脂肪酸盐、酯、多核芳香族化合物等。很多学者都发现TiO2对聚丙烯的光降解有明显的催化作用,刘青山等人[1]分析了加有锐钛矿型纳米二氧化钛的聚丙烯纤维在人工加速紫外光降解和自然光降解过程中拉伸断裂伸长率和表面形态的变化情况,得出锐钛矿型纳米TiO2可作为聚丙烯的一种高效光敏剂的结论。除了TiO2,还有很多其它光敏剂,如硬脂酸铈、硬脂酸铁、N,N-二丁基二硫代氨基甲酸铁、硬脂酸锰等均对聚乙烯薄膜有显著的光敏化作用效果。

在高分子中添加光敏剂制得改性高分子虽然能降解,但只是部分降解,而化学合成的羰基聚合物、Et/CO等,则能完全降解。一氧化碳和烯烃的交替共聚产物——聚酮,因为分子链中含有大量以酮形式存在的羰基,容易在紫外光的照射下发生光降解,羰基键附近的碳链断裂生成酮类、烯类及一氧化碳等低分子物质并返回到物质循环圈中,不存在环境污染,是一种新型的环境友好材料[2]。且有实验证明,分子量大、结晶度低的聚酮光降解性能更好。

2.生物降解高分子

生物降解材料包含完全生物降解高分子和生物破坏性高分子,前者是指在微生物作用下,在一定时间内能完全分解成二氧化碳和水的化合物;而后者在微生物作用下,仅能被分解成散落碎片。

2.1淀粉降解塑料

淀粉是天然高分子化合物,具有可再生、价格便宜、生物降解性等优点,成为近年来研究的热点。淀粉降解塑料泛指组成中含有淀粉或其衍生物的塑料,发展至今已经过了四个时期:填充型淀粉塑料,光/生物双降解型塑料,共混型塑料和全淀粉热塑性塑料。

填充型淀粉塑料一般是烯烃类聚合物中加入廉价的淀粉作为填充剂,其中淀粉含量在10%30%,仅淀粉能降解,被填充的PE、PVC等塑料需要几百年才能达到完全生物降解。光/生物双降解型是由光敏剂、淀粉、合成树脂及少量助剂等制成,其降解机理是先降解的淀粉可使高聚物母体变得疏松,增大表面/体积比,同时光敏剂、促氧剂等物质被光、热、氧引发,发生光氧化和自氧化作用,导致高聚物分子量下降并被微生物消化[3]。接下来人们发现,通过共混能解决淀粉粘性高、抗湿性低及与一些聚合物不相容等缺点,于是开始将淀粉与聚烯烃类等一些不可降解聚合物混合来提高淀粉的强度,但这类产品不能完全降解;后来便试图将其与PCL、PEG等可降解聚合物共混,制得了很多可完全降解材料。全淀粉热塑性塑料含淀粉70%-90%,其余组成是一些可光降解的加工助剂,使用后能在环境中完全降解,但天然淀粉不具有热塑性,必须先利用物理场作用使其分子结构无序化后才能在塑料机械中加工成型。

2.2化学合成型生物降解高分子[4]

酯基在自然界中容易被微生物或酶分解,所以常采用含有酯基结构的脂肪族聚酯来合成生物降解高分子材料,工业化的有聚乳酸和聚己内酯。

聚乳酸是以淀粉、糖蜜等为原料,发酵制得的易生物降解的热塑性材料,因乳酸存在一个羟基和一个羧基,可通过缩聚反应直接转换成低分子量聚酯,再通过选择适宜的聚合条件来合成目标分子量的聚合物。聚乳酸具有良好的生物可降解性、相容性、透明性、机械性能及物理性能等,被视为新世纪最有发展前途的新型包装材料。聚己内酯也是脂肪族聚酯中应用较为广泛的一种可降解高分子材料,通过己内酯的开环聚合制得,是一种半结晶型聚合物,室温下为橡胶态,具有很好的柔韧性、加工性和生物相容性,土壤中掩埋一年后能被微生物降解掉95%左右,降解产物是二氧化碳和水,被认为是环境友好包装材料。

2.3微生物合成的完全生物降解高分子[21-26]

微生物合成高分子材料是通过用葡萄糖或淀粉类喂养,微生物在体内发酵合成的一类有机高分子材料,主要包括微生物多糖、微生物聚酯和聚氨基酸等。

γ-聚谷氨酸就是利用微生物发酵生成的一种多功能生物高分子,具有生物相容性、可降解、无毒副作用等特性,可用于制备高吸水性树脂,作为一种治疗骨质疏松的重要载体、药物缓释材料,吸附重金属等,具有广泛的应用前景[5]。聚羟基脂肪酸酯是一类由很多细菌在非平衡生长条件(如缺氧、磷等)下合成的线性聚酯,可作为碳源和能源的贮藏性物质,增强细菌的生存能力,在自然界中可被微生物和特定的酶降解为二氧化碳和水,并且具有热可塑性、生物可再生、生物相容性、光学异构性等,可作为生物医用材料、日常消费用塑料制品、生物可降解包装材料、生物能源,已成为可降解生物材料领域研究的热点。

3.光/生物双降解高分子材料

顾名思义,光/生物双降解高分子材料同时具有光、生物双降解功能,将光降解机理与生物降解机理结合起来,可以使二者优缺点互补,达到更好的降解效果。其制备方法主要是在通用高分子材料中添加光敏剂、自动氧化剂、抗氧剂和生物降解助剂等。目前研究比较多的有淀粉和光敏剂光降解树脂合成的光/生物双降解淀粉塑料及可控降解剂共混改性法制得的改性可控光/生物双降解聚丙烯纤维制品等。光/生物双降解淀粉塑料前面已提过,此处不再赘述,而可控双降解聚丙烯纤维制品凭借着其可控降解性、存放性、无毒性等众多优点,必将具有巨大的发展前景。

4.结语

随着“白色污染”的日益加重和石油资源的日益枯竭,加大对高分子废弃物的回收利用率和研制出高效的降解技术都是有效的解决途径,但只有研究出可自然降解的高分子材料才能从根本上解决这些问题,且光-生物双降解高分子材料凭借着其独特的优势将会成为今后的研究重点之一。(作者单位:郑州大学材料科学与工程学院)

参考文献:

[1]刘青山,严玉蓉,赵耀明.纳米二氧化钛催化光降解聚丙烯纤维的研究[J].合成材料老化与应用,2005,34(1):8-12.

[2]邹丽萍.绿色高分子材料聚酮的合成研究[D].昆明:昆明理工大学,2007:1-5.

[3]范良兵.淀粉降解塑料的制备及性能的研究[D].广东:华南理工大学,2010:1-8.

高分子材料的性能特点范文篇7

中图分类号:G64文献标识码:A

DiscussionaboutthecoursesinElectronicMaterialsSpecialty

ZHOUTingdong,SONGTianxiu

(SchoolofMaterialsScienceandEngineering,XihuaUniversity,Chengdu,Sichuan610039)

AbstractTheelectronicmaterialasamaterialprofessionalmajorsrisingstar,hasreceivedwidespreadattention,whilethetrainingclassofelectronicmaterialsisalsoproposednewrequirements.Inthispaper,thedirectionofourhospitalteachingprofessionalelectronicmaterialsandcurriculumwerediscussedtoourhospitalforfurtherprofessionaldevelopmentmaterialsforreference.

Keywordscurriculum;laboratoryconstruction;electronicmaterialsspecialty

1电子材料及元器件专业方向开设的重要性

首先,要认清科技发展的形势,转变思想观念,提高对电子材料专业的认识。人类正进入信息社会,国际公认的新科技革命的三大支柱是材料、能源和信息技术。材料发展到今天,电子材料处于材料科学与工程的最前沿,是当前材料科学的一个重要方面。电子材料品种多、用途广、涉及面宽,是制作电子元器件和集成电路的基础,是获得高性能、高可靠性的先进电子元器件和系统的保证。电子材料的优劣直接影响电子产品的质量,与电子工业的经济效益有密切关系。

我院材料专业的设置是以传统结构材料为主。电子材料研究历史短,力量薄弱,课程、实验、实践设计等都还处于初期。因此,学院全体师生应转变思想观念,提高对电子材料新专业方向的认识,以积极的态度来面对新的挑战。

其次,吸取经验,找准定位,抓住自身特色进行专业设置。国内外很多高校都开设了电子材料方面的专业。在国外,美国宾州州立大学的材料研究中心在电子材料方向办学历史悠久,为美国,乃至全世界培养了诸多人才。此外,欧洲、澳洲、亚洲的日本等一些高校在此方向的办学、科研上也很有特色。在国内,西安交通大学、华中科技大学、电子科技大学、天津大学四所高校在电子材料方向为我国培养了大量人才。其他高校在电子材料的某一些领域也开设了课程,并进行研究。

四川省作为军用电子产品的研发和生产基地,近年来逐渐将目光转向民用,使电子产品的种类得到了极大地丰富,产量上得到了显著提高。同时,国外企业,特别是世界五百强企业也将四川作为西南投资的重点,从而对电子产品相关从业人员的需求量大为增加。西华大学是四川省属唯一的综合性重点高校,“服务地方,面向基层”是其一贯的宗旨。因此,为西部大开发和四川省的跨越式发展,培养电子材料方向的人才是我们必须肩负起来的责任。但是,受师资力量和硬件条件的限制,我们不可能面面俱到。

2课程体系的设置与改革

(1)结合传统材料学科,研究整个教学体系中的课程、实验、设计和实习。对传统材料专业的基础课程进行了适当的增删,保留了材料科学基础、材料工程基础、材料近代研究方法等课程,删掉了材料性能学、金属热处理等课程,增加了固体物理、半导体物理、电介质物理、量子力学与统计物理等物理类课程。即教学中仅保留传统材料的通用理论基础知识,增加或强化了后续专业课程开设所必须的物理或化学知识。

(2)四川的产业特点决定了电子材料是以功能陶瓷及元器件为主,因此,我们在专业课程的设置和教学内容的选材上,对电子陶瓷材料与元器件方面有所侧重。《电子陶瓷工艺原理》作为专业必修课,涵盖了电子陶瓷的制备、成型、烧结工艺与原理以及表面和烧后的加工处理,得到了普遍的重视。为了提高理论水平和指导实践,还开设了以电子陶瓷结构与性能的关系为主要内容的电子陶瓷材料与元器件。同时,还开设了微电子封装技术、电子元器件概论、电子材料与元器件测试技术、电子元器件制造技术及工艺、集成电路设计与制造、集成电路CAD、微波技术等与元器件相关的专业课程。

同时,也应根据专业特色,加强教材建设,积极组织教师申报省级精品课程,并组织力量编写部级精品教材。

(3)在实验与实践环节上,注重培养学生分析问题和解决问题的能力以及工程意识,注重学生个性和创造性培养,对学生无论将来成为技术型还是研究型和学术型人才都十分重要。①我们加强实验室建设,结合课程和教师的科研方向,开设必要的实验与课程设计,建立长期稳定的校外实习基地。学生在这样的教学体系下,经过四年的学习,能够对电子材料和元器件的工艺工装设计、制备工艺、微观结构及物理化学性能等有一个全面的了解。

在学生课程学习过程中,结合教师科研方向指导学生利用课余时间进行科研训练是我们在实践环节(下转第51页)(上接第44页)的一大特色,也体现了高校的办学优势。同时,为了体现实验与实践环节的重要性,我们加大了实验课程的比重,并将绝大多数实验作为专业实验课程进行教学。我们还开放了实验室,采取研究生带动本科生、高年级学生带动低年级学生的方式,学生自由选择相关研究课题,在课余时间由专业教师指导,进行科研训练。实践证明,科研训练使学生科研水平有很大的提高,也取得了一定成果,多次在四川省“挑战杯”大学生课外学术科技作品竞赛上获奖。

为保障教学与实践的效果,我们加大了对材料学院实验中心的投入。首先,组织专业的教师队伍对设备的采购进行论证,以达到资源配置的最优化,并在这一原则下采购了一批大型精密仪器和相当一部分实用设备,建立起比较专业的制备实验室和测试实验室。其次,引进专业的实验人员对设备进行管理和维护,并制定和逐步完善实验室和人员管理的规章制度与考核制度,以保障实验中心稳定、规范、良好地运行。再次,我们本着优势互补的原则,利用社会资源和企业合作。一方面,企业可以作为实践教学基地,使我们的学生可以接触企业,了解最新的技术信息,进行生产实习,做到理论与实践的结合;另一方面,由于企业在测试与分析方面有一定的不足,我们可以为其提供此方面的技术支持,同时还能锻炼学生的动手能力和独立分析、解决问题的能力。最后,组织教师编写比较完善的实验、课程设计指导书,对学生进行相关指导。②

3结束语

电子材料是材料科学与工程专业一个非常重要的方向,代表了一个国家科技、经济和军事的发展水平。在国内外众多高校纷纷开设电子材料方向的同时,西华大学材料学院也投入了相当的人力、物力和财力开设了此方向,并进行重点建设。虽然我们在综合优势上无法与一些重点大学相比,但是我们本着“服务地方,面向基层”的宗旨,并结合自身特点在教学和实践上办出了一些特色。凭借西部大开发的东风,我们一定会抓住四川省跨越式发展的契机,继续加大对电子材料专业方向的投入,争取在教学、实践中办出更多的特色,为四川省,以及西南地区,乃至全国培养出更多的电子材料人才,为我国的科技、经济、军事发展尽自己的一份力量。

基金项目:西华大学教育教学改革项目:材料科学与工程专业电子材料与元器件方向的课程设置及实践教学模式研究

注释

高分子材料的性能特点范文篇8

关键词:纳米材料;制备方法

1、纳米材料

纳米技术诞生于20世纪80年代末,是现代纳米科学和纳米技术相结合的产物。纳米技术是指在纳米尺寸范围内研究物质的组成,通过直接操纵和安排原子、分子而创造新物质。纳米科技的最终目标是直接以原子、分子及物质在纳米尺度上表现出来的新颖的物理、化学和生物特性制造出具有特定功能的产品,例如将电子器件体积极度缩小至纳米甚至单分子。纳米科技的诞生使人类改造自然的能力直接延伸到分子和原子,将全面开发物质潜在的信息和结构能力,使单位体积物质储存和处理信息的能力提高百万倍以上。纳米材料,从广义上讲,就是指在三维空间中至少有一维处于纳米尺度(1-100nm)范围内的材料或者是由他们作为基本单元组装而成的结构材料。按维数,可以分为三类:如果空间三维尺度均在纳米尺度,则为零维;如果空间中有二维尺度处于纳米尺度,则为一维;如果空间中只有一维处于纳米尺度,则为二维。纳米材料是纳米科技发展的重要基础,纳米材料结构的特殊性决定了纳米材料出现许多不同于传统材料的独特性能,进一步优化了材料的电学、热学及光学性能。

2、纳米材料制备

对纳米材料的制备方法目前主要有三种分类方法。第一种是根据制备原料状态分为固体法、液体法及气体法。第二种按反应物状态分干法和湿法。第三种为物理法、化学法和综合法。现今采用第三种分类方法较多。它又分为(i)化学法,分为水热法、水解法、熔融法等;(ii)物理法,分为蒸气冷凝法、爆炸法、电火花法、离子溅射法、机械研磨法、低温等离子体法等;(iii)综合法,分为等离子加强化学沉积法(PECVD)、激光诱导化学沉积(LICVD)等方法。

近年来虽然有关制备方法报导较多,但能够实用化批量生产的方法则很少。纳米材料的制备,某些方法颇具特色,但为减少篇幅,这里将以表1形式给出某些制备方法。下面对制备纳米材料具有某些特色的制备方法予以重点而详细的介绍。

2.1激光气相合成法

本世纪八十年代初由美国Haggery等人首先提出。目前用该法已合成出一批具有颗粒粒径小、不团聚、粒径尺寸分布窄等优点的超细粉,产率高,是一种可行的方法,具有工业化应用前景。如以C2H4作光敏剂,Ti(i-OC3H7)4/O2为原料,以CW-CO2激光为热解光源,在连续流动反应池中制备TiO2超微粒子。激光能量密度对纳米粒子制备影响的研究表明,在大气中用激光束直接加热Zn靶制备ZnO纳米粉,不同的激光能量密度可制备出形状结构不同的纳米粉。通常情况下,颗粒相互粘连为链状,条件合适时可得弥散状粉粒,而高能量密度激光加热可获得晶须结构粉粒。激光气相合成超细粉已成为世界各国关注的高新技术领域。

2.2冷冻干燥法

本法可较好地消除粉料干燥过程中的团聚现象。由于含水物料在结冰时可使固相颗粒保持在水中时的均匀状态。升华时,由于没有水的表面张力作用,固相颗粒之间不会过分靠近,从而避免了团聚产生。目前该法已制备出MgO-ZrO2及BaPb1-xBixO3超微粒子。

2.3机械合金化技术

该方法通过机械驱动力作用下非平衡相的形成和转变使粉末的组织结构逐步细化,达到不同组元原子互相渗入和扩散目的,发生反应。本法能够获得常规方法难以获得的非晶合金、金属间化合物、超饱和固溶体等材料,为纳米材料的制备提供了新途径。目前,机械合金化法应用范围还限于制备纳米金属和纳米合金材料领域,如已报导的有Al-Fe、A-Si3N4、Fe-B等合金纳米材料的制备。机械合金化法应适当控制球磨条件,控制O2含量,由于空气中氧存在易使产物形成多相体。

2.4高温气相裂解法

该法是由气相化学反应、表面反应、均相成核、非均相成核、凝并以及聚集或熔合六个部分组成。各基元步骤的相对重要性决定了产物粒子性能的差异。本法生产的TiO2超细粒子具有以下特点:粒度细、化学活性高、粒子呈球形、单分散性好、凝聚粒子小、可见光透过性好以及吸收紫外线以外的光能力强。因此本法生产的超微粒子(如TiO2)具有广泛实用价值,由于本法能实现连续生产而具有广阔工业前景。

2.5超声化学方法

它是利用超声空化能量加速和控制化学反应,提高反应率,引发新的化学反应的一门新兴边缘交叉学科,研究声能量与物质间的一种独特的相互作用。由于超声空化,产生微观极热,热续期间又非常短,可产生非常的化学变化。它不同于传统的光化学、热化学和电化学过程。超声空化现象存在于液体中的微气核(空化核),在声场的作用下振动生长和崩溃闭合的动力学过程。在空泡崩溃闭合时,泡内的气体或蒸气被压缩而产生高温及局部高压并伴随着发光、冲击波。利用超声空化原理,恰好为化学反应创造了一个独特的条件。本法已用于生产无定形铁、非晶态铁。该法只需低超声功率(~100瓦)而每小时可产生克数量级的超微粒,性能价格相比是目前尚无它法能与之媲美的具有潜在应用前景的好方法。

2.6醇盐水解法

本法通过金属盐的水解制备超微粒子,由于金属醇盐仅与水反应,因此杂质被引入的可能性很小。醇盐水解最大特点是从物质的溶液中直接分离制造所需的超微粒子,这样可得到纯度高、粒径细、粒度分布范围窄的超微粉末,该法具有制备工艺简单、化学组成能精确控制、粉体的性能重复性好以及得率高(~100%)特点。目前已合成出TiO2、NdO、Nd(OH)2、ZrO2(<10nm)。本法存在主要问题是原料成本偏高,如能降低原料之成本,则将具有极强的生命力。

2.7沉淀转化法

该方法理论依据是根据难溶化合物溶度积不同,通过改变沉淀转化剂的浓度、转化温度以及借助于表面活性剂来控制颗粒生长和防止颗粒团聚来获得单分散超微粒子。该法具有设备简单、原料成本低、工艺流程短、操作方便、产率高等优点,已制备出NiO,CuO,ZnO,Co3O4,Ni(OH)2,Co(OH)2,La(OH)3等超微粒子。

2.8共沉淀法

化学共沉淀法是一种最经济的制备氧化物粉体的方法。但是,沉淀在洗涤过滤和干燥时易产生团聚现象,已制备出纳米级Fe3O4、ZrO2-Y2O3、ZrO2。

2.9水热合成法

有关水热合成法的发展及在材料制备中的应用已有报道,但水热合成法用于制备纳米超微粒子则是近几年的事。目前已有SnO2、BaTiO3、Ni、镧锶铁氧体合成的报道。本法具有原料易得、粉末粒度较小以及成本相对较低的优点。该法可能用于工业化生产。

2.10其它方法

报导的方法尚有相转移法、配位沉淀法、气相蒸发法、热解法、气相反应法、微波等粒子体化学气相沉积法、机械化学法等制备纳米粒子方法,篇幅之限,此处只简要提及,不作展开。

参考文献

[1]颜停婷,张登松,施利毅.纳米结构材料的制备及应用.上海大学学报(自然科学版),2011,17(4):447-454

高分子材料的性能特点范文1篇9

关键词:高分子材料;成型加工;塑料加工;发展分析

中图分类号:TB324文献标识码:A

1高分子材料及其重要性

就目前来说,我国的高分子材料是由相对分子质量较高的化合物构成的复合材料,它主要有树脂或橡胶和次要成分添加剂组成,具有一定的可塑性,可挤压性,可纺性和可延性等特点。事实上正是这些特点使得其用于各种加工,深受大家的喜爱。

日常生活中所接触到的很多天然材料通常是高分子材料组合而成的,比如我们常见的天然橡胶、棉花等。但是高分子材料的最终使用形式一般来说是高分子材料的制品,高分子材料制品的性能与其成型加工过程却是息息相关的,它是受一定温度和压力的作用熔融塑化,然后通过模塑制成一定形状,冷却后在常温下能保持既定形状的材料制品。总的来说笔者认为,材料组成、成型加工方法和成型机械及模具决定了高分子材料制品的性能。

2浅述高分子材料的成型加工技术

说到高分子材料的成型加工技术是指通过外温的作用,让高分子材料的温度达到预定温度使其整体受热熔化,然后再通过成型设备加工成我们所需要的各种模型。而它的成型加工技术一般可以分为注、挤、吹、吸、拉等。而根据笔者的工作来看,所谓的高分子加工与成型有低分子聚合物或预聚物的加工、高分子熔体的加工、类橡胶状聚合物的加工等几种形式。

另外,根据加工方法的特点或高分子在加工过程中变化的特有的特征,可以用不同的方式对加工技术进行统一分类:第一个加工过程发生物理变化;第二个发生化学变化;第三个同时兼有物理和化学变化。笔者认为,这三种变化是在实际生产中比较常见的,下面根据具体的工作实践对它们分别做一论述探讨,以供同行参考。

2.1吹塑成型技术。吹塑成型技术它是把塑料经机头口模间隙呈圆筒形膜挤出,再经过机头中心吹入压缩空气,把膜管吹胀成直径较大的泡管状薄膜的工艺。这种成型技术又可以分为上引法、平引法和下引法。在这里需要特别说明的是上引法。

2.2挤出成型技术(如图1所示)。一般来说先按照管材的形状等把它冷却定型。然后再进入冷却水槽冷却,再经过牵引装置运送至切割装置切成所需长度。在成型方法上有外径定型和内径定型两种。

2.3压制成型技术(如图2所示)。一般这种技术主要用于热固性塑料的成型上。而在现实生产技术中,把它分为模压成型和层压成型两种类型。这两种技术相比较而言,他们的生产过程控制、使用设备等比较简单,适用于大型制品上。

2.4双向拉伸薄膜技术。就双向拉伸薄膜技术而言,是把狭缝机头平挤出来的厚片经纵横两方向同时拉伸,并且在拉伸的情况下进行热定型处理的方法。

2.5注射成型技术。一般来说,注射成型技术广泛用于热塑性塑料的成型,也用于某些热固性塑料的成型。它的原理是将粒料置于注射机的料筒内加热并在剪切力作用下变为粘流态,然后以柱塞或螺杆施加压力,使熔体快速通过喷嘴进入并充满模腔,冷却固化。

2.6压延成型技术。它是通过一系列相向旋转着的水平辊筒间隙,使物料承受挤压和延展作用,成为具有一定厚度,宽度与表面光洁的薄片状制品。当制品厚度大于或低于这个范围时,一般均不采用压延法而采用挤出吹塑法或其它方法。

3高分子材料成型加工技术的发展趋势

随着经济不断地发展,现在有些企业将高分子材料的研究应用纳入自主知识产权的新技术中。据笔者的不完全统计来看,塑料电磁动态塑化挤出设备已形成了7个规格系列,还有部分新设备销往荷兰、孟加拉等国家,产生了良好的经济效益和社会效益。另外还有塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的正在生产试用,并逐步推向市场目前新设备的市场需求情况很好。

结语

根据上面文章的整体论述,笔者认为我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的这样的一条道路,并且根据实际情况实现由跟踪向跨越的转变;同时还要把握技术前沿,培育自主知识产权。只有这样,我们的高分子材料在经济快速的发展大格局中才能利于不败之地。

参考文献

[1]孙国瑞.对高分子材料成型技术的思考[J]科海故事博览·科技探索,2012(07).

高分子材料的性能特点范文篇10

关键字:纳米特性

1963年,Uyeda及其合作者发展了气体蒸发法制备纳米粒子,并对金属纳米微粒的形貌和晶体结构进行了电镀和电子衍射研究,使科学界对纳米技术的概念有了多方面的认识。1974年,Taniguchi最早使用纳米科技(Nanotechnology)一词描述精细机械加工。1984年,德国科学家Gleiter等人首次采用惰性气体凝聚法制备了具有清洁表面的纳米粒子,然后在真空室中原位加压成纳米固体,并提出纳米材料界面结构模型。到1989年,纳米固体研究的种类已从由晶态微粒制成的纳米晶体材料(纳米导体、纳米绝缘体、纳米半导体)发展到纳米非晶体材料,并成功地制造出一些性能异常的复合纳米固体材料。1990年7月,在美国巴尔地摩召开的首届国际纳米科学技术会议(NST)上,正式把纳米材料科学做为材料科学学科的一个新的分支。从此,一个将微观基础理论研究与当代高科技紧密结合起来的新型学科――纳米材料学正式诞生,并一跃进入当今材料科学的前沿领域。

纳米材料的组成及其分类

1、按照维数,纳米材料的结构单元可以分为三类

(1)零维指在空间有三维处于纳米尺度。如原子团簇、纳米微粒、量子点或人造原子等。原子团簇,是指几个至几百个原子的聚集体,粒径小于1nm。它可以是由一元或多元原子以化学键结合起来的,也可以是由原子团簇与其它分子以配位化学键构成的原子簇化合物,如Fen,AgnSm和C60,C70等。纳米颗粒,尺寸在1-100nm之间,日本名古屋大学的上田良二先生给纳米微粒下的定义是用电子显微镜能看到的微粒。量子点或人造原子,是由一定数量的实际原子组成德聚集体,它们的尺寸小于100nm。人造原子具有与单个原子相似的离散能及,电荷也是不连续的,电子以轨道的方式运动。不同的是电子间的交互作用要复杂得多,人造原子中电子是处于抛物线型的势阱中,由于库仑排斥作用,部分电子处于势阱上部,弱的结合使它们具有自由电子的特征。

(2)一维指在空间有两维处于纳米尺度,如纳米丝、纳米棒和纳米管等;

(3)两维指在三维空间中有一维在纳米尺度,如超薄膜、多层膜、超晶格等。目前,纳米材料的研究除涉及上述纳米材料的三类范围外,还涉及到无实体的纳米空间材料,如纳米管、微孔和介孔材料,有序纳米结构及自组装体系等。纳米材料按照不同的组成和标准可以有不同的分类。

纳米材料按照组成可分为无机纳米材料、有机纳米材料、无机复合纳米材料、有机/无机复合纳米材料和生物纳米材料等。

纳米材料按照成键形式可以分为金属纳米材料、离子半导体纳米材料、半导体纳米材料以及陶瓷纳米材料等。

纳米材料按照物理性质可以分为半导体纳米材料、磁性纳米材料、导体纳米材料和超硬纳米材料等。按照物理效应可以分为压电纳米材料、热电纳米材料、铁电纳米材料、激光纳米材料、电光纳米材料、声光纳米材料和非线性纳米材料等。

纳米材料按照用途可分为光学纳米材料、感光纳米材料、光/电纳米材料等。

2、纳米材料的性质

纳米材料具有大的比表面积、表面原子数、表面能和表面张力随粒径的下降急剧增加,小尺寸效应、表面效应、量子尺寸效应及宏观量子隧道效应等将导致纳米微粒的热、磁、光、敏感特性和表面稳定性等不同与常规粒子,另外,粒子集合体的形态(离散态、链状、网络状、聚合状)也迥然不同,这将导致粒子最终物理性能变化多端。

2.1磁力学性质

纳米微粒的小尺寸效应、量子尺寸效应、表面效应等使得它具有常规粗晶粒材料所不具有的磁特性,纳米微粒的磁特性主要有如下几点:

(l)超顺磁性在小尺寸下,当各向异性能减小到与热运动能可相比拟时,磁化方向就不再固定在一个易磁化方向,易磁化方向作无规律的变化,结果导致超顺磁性的出现。纳米微粒尺寸小到一定临界值时进入超顺磁状态,不同种类的纳米磁性微粒显现超顺磁的临界尺寸是不相同的。

(2)矫顽力纳米微粒尺寸高于超顺磁临界尺寸时通常呈现高的矫顽力。

(3)磁化率纳米微粒的磁性和它所含的总电子数的奇偶性密切相关。每个微粒的电子可以看成一个体系,电子数的宇称可为奇或偶。

2.2光学性能

纳米粒子的一个最重要的标志是尺寸与物理的特征量相差不多。与此同时,大的比表面使处于表面态的原子,电子与处于内部的原子、电子的行为有很大的区别,这种表面效应和量子尺寸效应对纳米微粒的光学特征有很大的影响。甚至使纳米微粒具有同样材质的宏观大块物体不具有的新的光学特征。如宽频带强吸收、蓝移和红移现象、量子限域效应、纳米微粉的发光等。如纳米ZnO中量子限域引起载流空间局域化及通过特殊表面处理后,其发射光谱结构及发射强度会改善且产生紫外激光发射。

2.3表面活性及敏感特性

随纳米微粒粒径减小,比表面积增大,表面原子数增多及表面原子配位不饱和性导致大量的悬键和不饱和键等,这使得纳米微粒具有高的表面活性,同时还会提高反应的选择性。由于纳米微粒具有大的比表面积,高的表面活性,以及表面与气氛气体相互作用强等原因,纳米微粒对周围环境十分敏感,如光、温气氛、湿度等,可用于传感器。

2.4光催化性能

光催化是纳米半导体的独特性能之一。当半导体氧化物纳米粒子受到大于禁带宽度能量的光子照射后,电子从价带跃迁到导带,产生了电子-空穴对,电子具有还原性,空穴具有氧化性,空穴与氧化物半导体纳米粒子表面的OH-反应生成氧化性很高OH・自由基,活泼的自由基可以把许多难降解的有机物氧化为二氧化碳和水。目前广泛研究的半导体光催化剂大都属于宽带的n型半导体氧化物。

高分子材料的性能特点范文1篇11

论文摘要:高分子化学是研究高分子化合物的合成、化学反应、物理化学、物理、加工成型、应用等方面的一门新兴的综合性学科。那么,高分子化学具体内容及高分子与生活、高科技的发展关系如何呢?以下作简单介绍。

人类从一开始即与高分子有密切关系,自然界的动植物包括人体本身,就是以高分子为主要成分而构成的,这些高分子早已被用作原料来制造生产工具和生活资料。人类的主要食物如淀粉、蛋白质等,也都是高分子。只是到了工业上大量合成高分子并得到重要应用以后,这些人工合成的化合物,才取得高分子化合物这个名称。但提到合成高分子材料(聚合物)的应用与发展,人们在想到它们极大地方便我们的生活的同时,很多人会想到“白色污染”,甚至将水污染、大气污染等各种环境问题的产生怪罪于高分子,这说明他们对高分子并不十分了解。当今社会高分子的功用无处不在,而人们认识高分子时,往往忽略了它带给人类生活的巨大变化和种种利益,不了解它为人类文明做出的贡献是巨大的。

一、高分子化学的内涵

1.何为高分子化学

顾名思义,高分子就是相对分子质量很高的分子,它是高分子化合物的简称。高分子化合物,又称聚合物或高聚物,是结构上由重复单元(低分子化合物—单体)连接而成的高相对分子质量化合物。高分子的相对分子质量非常的大,小到几千,大到几百万、上千万的都有。我们有时将相对分子质量较低的高分子化合物叫低聚物。高分子化学作为化学的一个分支,同样也是从事制造和研究分子的科学,但其制造和研究的对象都是大分子,即由若干个原子按一定规律重复地连接成具有成千上万甚至上百万质量的、最大伸直长度可达毫米量级的长链分子,称为高分子、大分子或聚合物。

2.高相对分子质量与高强度

相对分子质量和物质的性质是密切相关的,是决定物质性质的一个重要因素。只有相对分子质量高的化合物才有一定的机械力学性能,才能作为材料使用。例如乙烷、辛烷、廿烷、聚乙烯、超高分子量聚乙烯,都是直链的烷烃化合物,但是分子量变化很大,其机械力学性能因而也有极大的区别。

3.高分子科学的主要内容

既然高分子化学是制造和研究大分子的科学,对大分子的反应和方法的研究,显然是高分子化学最基本的研究内容。高分子科学不仅是研究化学问题,也是一门系统的科学。高分子科学的主要内容有:如何将低分子化合物连

接成高分子化合物,即聚合反应的研究。高分子化合物的结构与性质关系。不同性质的高分子,其结构必然是不同的。为了得到不同性质的高分子,就要去合成具有特殊结构的高分子。

二、高分子材料化学的应用

材料是人类社会文明发展阶段的标志,是人类赖以生存和发展的物质基础。它是指经过某种加工,具有一定结构、组分和性能,并可应用于一定用途的物质。上世纪半导体硅、高集成芯片、高分子材料的出现和广泛应用,把人类由工业社会推向信息和知识经济社会。可以说某一种新材料的问世及其应用,往往会引起人类社会的重大变革,材料是人类文明的重要标志。如果说现在人人离不开高分子材料,家家离不开高分子材料,处处离不开高分子材料,是一点也不过分的。高分子化合物的最主要的应用是以高分子材料的形式出现的,高分子材料包括了塑料、纤维、橡胶三大传统合成材料,另外许多精细化工材料也都是高分子材料。

第一,塑料:一类是通用塑料,如容器、管道、家具、薄膜、鞋底与泡沫塑料等等;另一类叫工程塑料,其强度大,如汽车零部件、保险杠、洗衣机内的滚筒、电器的外壳等。

第二,纤维:人们开发出聚酯、尼龙、腈纶、维尼纶等高分子化合物,通过不同的加工,生产出了各种纤维制品,极大地满足着人类的需要。

第三,橡胶:天然橡胶的种类和品质都受到很大的限制,于是科学家们不断开发出了各种人造橡胶,如丁苯橡胶、丁腈橡胶、乙丙橡胶、氟橡胶、硅橡胶等。

第四,精细化工:比如使得我们的世界变得丰富多彩的各种涂料产品,如家具漆、内外墙乳胶漆、汽车漆、飞机漆等。女孩子用的指甲油,使牙齿变白的增白剂也都是涂料。还有万能胶、建筑用胶、医用胶、结构胶等黏合剂,以及各种吸水树脂等都是高分子产品。

三、高分子化学与高科技的结合

当今社会,人们将能源、信息和材料并列为新科技革命的三大支柱,而材料又是能源和信息发展的物质基础。自从合成有机高分子材料的那一天起,人们始终在不断地研究、开发性能更优异、应用更广泛的新型材料,来满足计算机、光导纤维、激光、生物工程、海洋工程、空间工程和机械工业等尖端技术发展的需要。高分子材料向高性能化、功能化和生物化方向发展,出现了许多产量低、价格高、性能优异的新型高分子材料。

随着生产和科学技术的发展,许多具有特殊功能的高分子材料也不断涌现出来,如分离材料、光电材料、磁性材料、生物医用材料、光敏材料、非线性光学材料等等。功能高分子材料是高分子材料中最活跃的领域,下面简单介绍特种高分子材料:功能高分子是指当有外部刺激时,能通过化学或物理的方法做出相应反应的高分子材料;高性能高分子则是对外力有特别强的抵抗能力的高分子材料。它们都属于特种高分子材料的范畴;特种高分子材料是指带有特殊物理、力学、化学性质和功能的高分子材料,其性能和特征都大大超出了原有通用高分子材料(化学纤维、塑料、橡胶、油漆涂料、粘合剂)的范畴。

第一,力学功能材料:强化功能材料,如超高强材料、高结晶材料等;)弹性功能材料,如热塑性弹性体等。

第二,化学功能材料:分离功能材料,如分离膜、离子交换树脂、高分子络合物等;反应功能材料,如高分子催化剂、高分子试剂;生物功能材料,如固定化酶、生物反应器等。

第三,生物化学功能材料:人工脏器用材料,如人工肾、人工心肺等;高分子药物,如药物活性高分子、缓释性高分子药物、高分子农药等;生物分解材料,如可降解性高分子材料等。

可以预计,在今后很长的历史时期中,特种与功能高分子材料研究将代表了高分子材料发展的主要方向。

四、高分子化学的可持续发展

研究高分子合成材料的环境同化,增加循环使用和再生使用,减少对环境的污染乃至用高分子合成材料治理环境污染,也是21世纪中高分子材料能否得到长足发展的关键问题之一。比如利用植物或微生物进行有实用价值的高分子的合成,在环境友好的水或二氧化碳等化学介质中进行化学合成,探索用前面提到的化学或物理合成的方法合成新概念上的可生物降解高分子,以及用合成高分子来处理污水和毒物,研究合成高分子与生态的相互作用,达到高分子材料与生态环境的和谐等。显然这些都是属于21世纪应当开展的绿色化学过程和材料的研究范畴。

参考文献

高分子材料的性能特点范文篇12

关键词:高分子材料;纳米技术;功能高分子;航天;可降解生物

中图分类号:K477文献标识码:A

一、高分子材料改性中纳米技术的应用

一般,纳米技术被认为是对纳米材料的性质和纳米结构的设计的一项研究技术。当任何材料用高科技手段被细化到纳米量级时,该材料的物化性能就会发生巨大的变化,产生出一些奇异的物化现象,呈现出与常规材料完全不同的新的性质。而且如果将拥有特殊性能的纳米粒子与高分子材料复合时,纳米粒子可以显著改变或者增强该高分子材料的某些性能。因此,在高分子材料改性中应用的纳米技术主要是包括两大类:第一,纳米粒子与高分子材料的复合;第二,对高分子材料进行纳米结构的设计和制作。其中第一类占主要地位。

例如,于苯乙烯一丙烯酸醋IPN/MMT纳米复合阻尼材料的研究,就是利用纳米粒子与高分子材料复合,提高原材料由于粘弹性而具有的抗震消声性能。并且研究表明,纳米粒子特别是二维纳米片均匀分散于聚合物基体中之后,将能大大改进和提高材料原有的应用性能,同时还能赋予基体材料其他新的性能:增强增韧性能、耐磨性能、阻透性能、抗菌性能、抗老化性能及防紫外线性能。再如,将纳米无机粘土粒子通过咪唑类有机改性剂有机化后得到的纳米粒子片层,跟尼龙6材料复合后,所得复合材料的阻燃性能显著提高。

利用纳米材料和纳米结构的种种特有性能,可以帮助我们合成制造出更多更适用的新材料。因此,开发纳米高分子复合材料,是改造传统聚合物工业技术的最有效途径,具有巨大研究价值和市场潜力。

二、功能高分子材料发展

功能高分子材料是指与常规聚合物相比具有明显不同的物理化学性质,并具有某些特殊功能(如电学、光学等方面的特殊功能)的聚合物大分子(主要指全人工和半人工合成的聚合物)。功能高分子是高分子材料的一个特殊领域,泛指性能特殊、有某些特殊功能、用量少但能产生重要新技术的一类特殊高分子材料。随着经济和科学技术的发展,新能源开发、交通和宇航技术、微电子技术、生物医药等各个领域的发展和进步都迫切需要相应的功能高分子材料作为基础。高分子材料的功能设计的主要途径是:1)通过分子设计合成新功能,如非晶质光盘(APO)的研制;2)通过特殊加工赋予材料功能特性,如功能高分子膜和塑料光纤;3)通过两种或两种以上具有不同功能或性能的材料复合获得新功能,如层积复合填料复合的EMI/RFI屏蔽导电塑料和高分子磁性体;4)通过对材料进行各种表而处理以获得新功能,如表面处理法,EMI/RFI屏蔽导电塑料进行功能设计的思想,贯穿了功能高分子材料发展的各领域,代表着当今功能高分子材料的发展方向。在生物医药材料领域,就有人模仿自然骨成分和形成过程,利用电化学反应为胶原分子自组装和矿化提供反应动力和微环境,获得了成分和结构与骨组织相似的生物活性涂层,并且可以可控的释放生物活性因子调控促进骨生长,是增强医用移植体材料生物活性,加快早起治愈速度的理想方法。特种与功能高分子材料之所以能成为国内外材料学科的重要研究热点之一,最主要的原因在于它们具有独特的“性能”和“功能”,可用于替代其他功能材料,并提高或改进其性能,使其成为具有全新性质的功能材料。因此,功能高分子的发展是没有固定学科边界的。而我国更应该加大对功能高分子材料研究的重视,加强国际交流,努力提高自主研发水平,跻身世界高精尖技术行列。

三、生物可降解高分子材料的发展

生物可降解高分子材料是指在一定的时间和一定的条件下,能被微生物或其分泌物在酶或化学分解作用下发生降解的高分子材料。生物可降解的机理大致有以下三种方式:生物的细胞增长使物质发生机械性破坏;微生物对聚合物作用产生新的物质;酶的直接作用,即微生物侵蚀高聚物从而导致裂解。一般认为,高分子材料的生物可降解是经过两个过程进行的。首先,微生物向体外分泌水解酶和材料表面结合,通过水解切断高分子链,生成分子量小于500的小分子量的化合物;然后,降解的生成物被微生物摄入人体内,经过种种的代谢路线,合成为微生物体物或转化为微生物活动的能量,最终都转化为水和二氧化碳。因此,生物可降解并非单一机理,而是一个复杂的生物物理、生物化学协同作用,相互促进的物理化学过程。到目前为止,有关生物可降解的机理尚未完全阐述清楚。除了生物可降解外,高分子材料在机体内的降解还被描述为生物吸收、生物侵蚀及生物劣化等。生物可降解高分子材料的降解除与材料本身性能有关外,还与材料温度、酶、PH值、微生物等外部环境有关。

四、先进高分子材料在航天工业领域的应用

新中国成立以来,以两弹一星为代表的航天产品的研制带动了我国许多关键新材料项目的启动和开展。改革开放以来,我国载人航天、探月工程等重点工程的开展需要众多新材料的支撑,也促使我国在许多关键新材料领域的研制工作取得了突破。其中,先进高分子材料是我国航天工业赖以支撑的重要配套材料,主要包括橡胶、工程塑料、胶黏剂及密封剂、涂料等。

作为理想的密封及阻尼材料,橡胶的应用非常广泛。我国航天工业建立伊始,为了满足当时的迫切需求,我国开展了大量特种橡胶材料的研制攻关工作;随着我国工业的发展,高性能橡胶材料及应用技术也取得了长足进步。工程塑料是指可作为结构材料,在较宽的温度范围内承受机械应力,在较苛刻的化学物理环境中使用的高性能高分子材料。其结构特点是主链由苯环、萘环、氮杂环等通过醚基、砜基、酮基等连接而成,具有重量轻、强度高、耐热性好和耐辐射性好等优良特性,已经逐步取代金属材料,用于装备中大量次结构件的制造。目前,在国防装备上获得应用的工程塑料主要有聚酰胺(PA)、聚氨酯(PU)、聚苯硫醚(PPS)、聚酰亚胺(PI)、聚醚醚酮(PEEK)、聚四氟乙烯(PTFE)等。航天产品广泛采用轻合金、蜂窝结构和复合材料,因此,胶黏剂及胶接技术应用普遍,但航天产品使用环境苛刻,要承受高温、烧蚀、温度交变、高真空、超低温、热循环、紫外线、带电粒子、微陨石、原子氧等环境考验。航天材料及工艺研究所研制了百余种特种胶黏剂及密封剂,主要包括聚氨酯类、酚醛树脂类、环氧树脂类、有机硅类、丙烯酸酯类、有机硼类胶黏剂等,其中绝大多数已应用于我国运载火箭、卫星及飞船等航天产品。

结语

高分子材料也叫做聚合物材料,通常是指由千万个小分子化合物以化学键联结而成的大分子化合物。我们生活中应用的高分子材料主要就是指合成塑料、合成橡胶、合成纤维等合成高分子材料。然而至20世纪60年代,高分子材料工业已基本完善,解决了人们的衣着、日用品和工业材料等需求。因此,在未来的高分子材料研究领域,高分子材料的三个钟头发展方向将会是高分子材料功能化、纳米高分子材料复合应用以及可生物降解高分子材料研发。

参考文献

[1]王周玉,岳松,蒋珍菊,芮光伟,任川宏.可生物降解高分子材料的分类及应用[J].四川工业学院学报,2003,S1:145-147.

你会喜欢下面的文章?

    党员酒驾检讨书范例(精选3篇)

    - 阅0

    2020年党员酒驾检讨书范例篇1尊敬的交警同志:关于我酒后驾驶的行为,几天来,我认真反思,深刻自剖,为自己的行为感到了深深地愧疚和不安,在此,我谨向各位做出深刻检讨,并将我几天来的.....

    晚霞写景作文范例(精选5篇)

    - 阅0

    晚霞写景作文范例篇1云,悠悠地浮在湛蓝的天空上,洁白洁白的。有的像深邃的峡谷,有的像白色的雪莲……散布在天空中,显得非常柔媚。看!这些多姿的云彩,被鲜红的阳光照得一片红润.....

    执业药师工作总结范例(3篇)

    - 阅0

    执业药师工作总结范文1资料与方法1.1资料来源2014年12月-2015年3月,随机对天津市内六区200家药店的215名店员进行了问卷调查。问卷采用现场自填法,共发放问卷215份,其中有效问.....

    执业兽医范例(3篇)

    - 阅0

    执业兽医范文一、改革的指导思想和目标兽医管理体制改革的指导思想是:以三个代表和科学发展观为指导,坚持预防为主的兽医工作方针,按照政府全面履行经济调节、市场监管、社会.....

    幼儿园教职工培训计划范文(精选5篇)

    - 阅1

    幼儿园教职工培训计划篇1一、培训目标和培训重点坚持以师德建设为中心,以促进教师专业发展为目标,以《指南》....