纳米化学论文范例(3篇)

来源:整理

纳米化学论文范文

【论文摘要】:讨论纳米科学和技术在新时期里发展所面对的困难和挑战。一系列新的方法将被讨论。我们还将讨论倘若这些困难能够被克服我们可能会有的收获。

纳米科学和技术所涉及的是具有尺寸在1-100纳米范围的结构的制备和表征。在这个领域的研究举世瞩目。无论是从基础研究(探索基于非经典效应的新物理现象)的观念出发,还是从应用(受因结构减少空间维度而带来的优点以及因应半导体器件特征尺寸持续减小而需要这两个方面的因素驱使)的角度来看,纳米结构都是令人极其感兴趣的。

1.纳米结构的制备

有两种制备纳米结构的基本方法:build-up和build-down。所谓build-up方法就是将已预制好的纳米部件(纳米团簇、纳米线以及纳米管)组装起来;而build-down方法就是将纳米结构直接地淀积在衬底上。前一种方法包含有三个基本步骤:1)纳米部件的制备;2)纳米部件的整理和筛选;3)纳米部件组装成器件(这可以包括不同的步骤如固定在衬底及电接触的淀积等等);“build-down”方法提供了杰出的材料纯度控制,而且它的制造机理与现代工业装置相匹配,换句话说,它是利用广泛已知的各种外延技术如分子束外延(mbe)、化学气相淀积(movcd)等来进行器件制造的传统方法。“build-down”方法的缺点是较高的成本。

很清楚纳米科学的首次浪潮发生在过去的十年中。在这段时期,研究者已经证明了纳米结构的许多崭新的性质。学者们更进一步征明可以用“build-down”或者“build-up”方法来进行纳米结构制造。这些成果向我们展示,如果纳米结构能够大量且廉价地被制造出来,我们必将收获更多的成果。

2.纳米结构尺寸、成份、位序以及密度的控制

为了充分发挥量子点的优势之处,我们必须能够控制量子点的位置、大小、成份已及密度。其中一个可行的方法是将量子点生长在已经预刻有图形的衬底上。由于量子点的横向尺寸要处在10-20纳米范围(或者更小才能避免高激发态子能级效应,如对于gan材料量子点的横向尺寸要小于8纳米)才能实现室温工作的光电子器件,在衬底上刻蚀如此小的图形是一项挑战性的技术难题。对于单电子晶体管来说,如果它们能在室温下工作,则要求量子点的直径要小至1-5纳米的范围。这些微小尺度要求已超过了传统光刻所能达到的精度极限。有几项技术可望用于如此的衬底图形制作。

⑴电子束光刻通常可以用来制作特征尺度小至50纳米的图形。如果特殊薄膜能够用作衬底来最小化电子散射问题,那特征尺寸小至2纳米的图形可以制作出来。

⑵聚焦离子束光刻是一种机制上类似于电子束光刻的技术。

⑶扫描微探针术可以用来划刻或者氧化衬底表面,甚至可以用来操纵单个原子和分子。最常用的方法是基于材料在探针作用下引入的高度局域化增强的氧化机制的。

⑷多孔膜作为淀积掩版的技术。多孔膜能用多种光刻术再加腐蚀来制备,它也可以用简单的阳极氧化方法来制备。

⑸倍塞(diblock)共聚物图形制作术是一种基于不同聚合物的混合物能够产生可控及可重复的相分离机制的技术。

⑹与倍塞共聚物图形制作术紧密相关的一项技术是纳米球珠光刻术。此项技术的基本思路是将在旋转涂敷的球珠膜中形成的图形转移到衬底上。

⑺将图形从母体版转移到衬底上的其他光刻技术。几种所谓“软光刻“方法,比如复制铸模法、微接触印刷法、溶剂辅助铸模法以及用硬模版浮雕法等已被探索开发。

3.纳米制造所面对的困难和挑战

随着器件持续微型化的趋势的发展,普通光刻技术的精度将很快达到它的由光的衍射定律以及材料物理性质所确定的基本物理极限。通过采用深紫外光和相移版,以及修正光学近邻干扰效应等措施,特征尺寸小至80nm的图形已能用普通光刻技术制备出。然而不大可能用普通光刻技术再进一步显著缩小尺寸。采用x光和euv的光刻技术仍在研发之中,可是发展这些技术遇到在光刻胶以及模版制备上的诸多困难。目前来看,虽然也有一些具挑战性的问题需要解决,特别是需要克服电子束散射以及相关联的近邻干扰效应问题,但投影式电子束光刻似乎是有希望的一种技术。扫描微探针技术提供了能分辨单个原子或分子的无可匹敌的精度,可是此项技术却有固有的慢速度,目前还不清楚通过给它加装阵列悬臂?拍芊袷顾?锏娇梢越邮艿目绦此俣取?p>

对一个理想的纳米刻写技术而言,它的运行和维修成本应该低,它应具备可靠地制备尺寸小但密度高的纳米结构的能力,还应有在非平面上刻制图形的能力以及制备三维结构的功能。此外,它也应能够做高速并行操作,而且引入的缺陷密度要低。然而时至今日,仍然没有任何一项能制作亚100nm图形的单项技术能同时满足上述所有条件。现在还难说是否上述技术中的一种或者它们的某种组合会取代传统的光刻技术。究竟是现有刻写技术的组合还是一种全新的技术会成为最终的纳米刻写技术还有待于观察。

4.展望

目前,已有不少纳米尺度图形刻制技术,它们仅有的短处要么是刻写速度慢要么是刻写复杂图形的能力有限。这些技术可以用来制造简单的纳米原型器件,这将能使我们研究这些器件的性质以及探讨优化器件结构以便进一步地改善它们的性能。必须发展新的表征技术,这不单是为了器件表征,也是为了能使我们拥有一个对器件制造过程中的必要工艺如版对准的能进行监控的手段。随着器件尺度的持续缩小,对制造技术的要求会更苛刻,理所当然地对评判方法的要求也变得更严格。随着光学有源区尺寸的缩小,崭新的光学现象很有可能被发现,这可能导致发明新的光电子器件。然而,不象电子工业发展那样需要寻找mos晶体管的替代品,光电子工业并没有如此的立时尖锐问题需要迫切解决。纳米探测器和纳米传感器是一个全新的领域,目前还难以预测它的进一步发展趋势。然而,基于对崭新诊断技术的预期需要,我们有理由相信这将是一个快速发展的领域。总括起来,在所有三个主要领域里应用纳米结构所要求的共同点是对纳米结构的尺寸、材料纯度、位序以及成份的精确控制。一旦这个问题能够解决,就会有大量的崭新器件诞生和被研究。

参考文献

[1]王淼,李振华,鲁阳,齐仲甫,李文铸.纳米材料应用技术的新进展[j].材料科学与工程,2000.

[2]吴晶.电喷雾法一步制备含键合相纳米微球的研究[d].天津大学,2006.

[3]张喜梅,陈玲,李琳,郭祀远.纳米材料制备研究现状及其发展方向[j].现代化工,2000.

纳米化学论文范文篇2

关键词气相法;氧化锌;纳米线阵列;扫描电镜

中图分类号O6-3文献标识码A文章编号1674-6708(2014)109-0149-02

0引言

目前,纳米材料的制备与应用研究一直是材料界的热门课题之一。其中,一维ZnO纳米结构具有独特的形貌和优异性能,广泛的应用在纳米发电机、纳米激光器、LED、传感器、太阳能电池等新型纳米器件和系统。一维纳米结构的有序化将会更大程度上地发挥纳米材料的优异特性。气相法合成一维纳米材料具有制备工艺相对简单、晶体质量高等优点,已成为大家公认的生长一维纳米材料最重要的手段之一。一方面,最初报道高质量的ZnO纳米线阵列是利用催化剂辅助化学气相沉积法在蓝宝石衬底上获得的,但其缺点是蓝宝石衬底昂贵且不导电。另一方面,由第三代半导体材料ZnO和GaN组成的异质结半导体器件表现出极大的应用价值[4,5],目前高质量的p、i、n型的GaN外延层已实现批量生产(基于GaN及其化合物的激光二极管和发光二极管已实现了商业化应用);两者同属纤锌矿结构,晶格失配较小,热膨胀系数也很相似,生长出的ZnO纳米线具有更高的垂直取向性。此外,ZnO纳米阵列代表一类特殊的一维纳米结构,目前研究的一个热点是如何将这种结构单元进行合理的组装,使其在光电、能源等领域中发挥其功能。因此,一维ZnO纳米结构的形貌和尺寸控制便成为这方面的研究重点和热点,对提高材料的性能和开发设计下一代纳米器件具有重要的意义。本文正是围绕此发展趋势,从实验上开展ZnO纳米阵列工艺优化方面的基础性研究工作。

本文选用热蒸发气相输运法,对在GaN衬底上生长ZnO纳米线阵列进行较为系统的工艺优化研究。重点探讨了影响定向生长ZnO纳米阵列的几个关键生长因素,如催化剂厚度、沉积温度、管内压强等,并最终实现了整片密度均匀、长度和直径分布窄的纳米线阵列的可控制备技术。

1实验

利用碳热还原法,反应原料是分析纯的ZnO粉和石墨碳粉。所用设备为管式炉,高纯氧气和氩气分别做反应气体和载气。衬底是(0001)面GaN/蓝宝石,并预先在GaN上沉积一层Au作催化剂。实验步骤如下:首先将ZnO粉和石墨碳粉(质量比1:1)均匀混合后放入小舟内,转移至石英管内加热区的中心处,之后将衬底放在下游某处。石英管封闭后开始抽真空,同时通入流量分别是1sccm和49sccm的O2和Ar。待压强稳定时以50℃/min开始加热升温到950℃并保持30min。一直通气降到室温时打开石英管取出样品。利用Siron200型场发射扫描电镜(SEM)来检测样品的表面结构和形貌。

2结果与讨论

目前被广泛认可的气相法生长一维纳米材料的机理主要是VS(气-固)和VLS(气-液-固)两种。考虑化学气相沉积的动力学和热力学,分析生长过程中可能会发生的化学反应,可知反应物总量、石英管内的气压、氧含量和沉积温度等几个因素都可能会对实验结果产生影响。

先讨论催化剂厚度对纳米线生长的影响。镀Au的时间分1.5min和2min两种,在固定反应物质量约0.16g,管内3Kpa的实验参数下,离反应中心11.5cm和12.5cm两处沉积区来收集产物进行对比。为便于观察,编号S1-S4四个样品SEM测试时均倾斜一定角度(下同),其结果如图1。比较样品S1和S3,样品S2和S4,可知在相同的沉积温度下,催化剂厚度对产物有较大影响。比较样品S3和S4,可知使用催化剂厚度相同,沉积温度的不同产物也大有区别。实验还发现,所有的样品表面只有颗粒或少许的纳米线(长度较短,方向有些混乱),这可能与反应物总量不足有关,需进一步调整工艺参数。

图1催化剂Au厚度(2min和1.5min)和沉积距离(11.5cm和12.5cm)对产物的影响。

图2在不同沉积区位置所得样品的SEM结果,图(4)是样品S6的俯视图。

接下来讨论沉积温度的不同对产物的影响。将气压调整至2KPa,其它条件不变,三个距离不同的样品依次标记为S5:10.5cm,S6:12.5cm,S7:14.0cm,其SEM的结果见图2。在较近处的样品S5呈棒状,直径大小不一,但生长方向高度一致,分别均匀。图2.2和2.4(同一样品的SEM俯视图)显示的是高质量垂直生长的纳米线阵列样品S6,其直径分布范围约100nm~120nm,密度也相当均匀。而在较远处样品S7发现了零星散乱的纳米线和一层薄薄的晶粒/纳米棒膜。我们分析以上图1和2的原因如下:VLS生长机制下Au的厚度越小,Au/Zn合金达到饱和并析出所需的Zn源相对越少;受温度梯度的影响,只有在沉积区的温度合适Zn气压足够下,纳米线才能形成并长大。大量的实验表明,选取Au2min厚的催化剂,沉积区距离12.5cm,反应物总量增加到0.20g,实验的重复性和控制性比较好。接下来讨论管内真空度对纳米线生长的影响。

图3反应压强对ZnO纳米结构的影响。

在固定催化剂厚度、反应物总量、升温速率、反应时间、沉积距离等条件下,纳米线的生长跟腔内压强有很大的关系,样品S8-S11的SEM结果见图3。管内压强较低(

通过上述结果的对比和讨论,实现定向生长一维ZnO纳米阵列的可控制备至少需同时满足以下两点要求:一是引入合适厚度的Au来控制成核点的密度,保证后期阵列生长的垂直性;二是所有成核点的生长要始终同步,同时开始至同时结束方能保证纳米线尺寸的一致性。

3结论

通过大量实验,利用化学气相沉积法,在镀金的GaN衬底上较为系统的探究了影响ZnO纳米线阵列生长的几个因素,并重点通过改变沉积处的温度和反应室内压强值讨论并分析了纳米线阵列最优化的生长工艺参数。结果表明,当管内保持在1KPa~2KPa的压强范围,在距反应中心12.5cm处的沉积区得到了高质量定向生长的ZnO纳米线阵列。

参考文献

[1]WangZ.L.,SongJ.H.Piezoelectricnanogeneratorsbasedonzincoxidenanowirearrays[J].Science,2006,312:242-246.

[2]LaiE.,KimW.,YangP.D.VerticalNanowireArray-BasedLightEmittingDiodes[J].NanoResearch,2008,1:123-128.

[3]XuS.,QinY.,XuC.,etal.Self-powerednanowiredevices[J].NatureNanotechnology,2010,5:366-373.

纳米化学论文范文

【关键词】纳米材料;文物科技保护;应用

0前言

我国历史悠久,文物资源丰富。随着时间的流逝他们都在经受着不同程度的损害,文物保护工作任重而道远。文物保护是应用自然科学的手段对文物进行调查研究和保护修复,其中材料科学对其起着重要的作用[1]。随着科学技术的不断发展,越来越多的新材料被应用于文物科技保护领域,纳米材料就是其中之一。

纳米材料[2]由纳米微粒构成,纳米微粒的尺寸范围是1~l00nm,它是由数目较少的原子或分子组成的原子群或分子群,其表面是既无长程序又无短程序的非晶层;而在粒子内部是具有长程序的晶状结构,由于这种特殊的结构,导致了纳米微粒的表面效应、体积效应和量子尺寸效应[3],并由此产生许多与常规材料不同的物理、化学特性,许多高性能产品将有机会在纳米科技领域中实现。

1纳米复合材料用于文物保护的优势

利用纳米材料特殊的性能,通过把某些纳米材料与传统有机高分子聚合物复合,用于文物保护,主要有以下几大优势:

1.1疏水疏油性

纳米微粒尺寸小,比表面积大,表面能高,这种表面效应,使其具有很高的物理化学活性和很强的吸附性,可强力吸附气体分子,在材料表面形成一层稳定的气体薄膜,就使得水和油无法在其表面展开[4]。

如今随着工业化的发展,环境污染对文物古迹造成的危害日益严峻,纳米复合材料的疏水疏油性将为发展新型文物保护层材料提供新的方法,该类材料在阻止水蒸气,有机物,酸雨等有害物质对文物的侵蚀方面将会起到不可估量的作用。

1.2减小光辐射

光辐射是影响文物寿命的重要环境因素,特别是紫外线照射能加速文物的老化[5]。纳米微粒的直径小,材料以离子键和共价键为主要结合力,对光的吸收能力较强,能够有效屏蔽光线,将其应用于文物表面保护,有利于文物抗紫外线和抗老化。例如纳米TiO2[6],被广泛用做抗紫外线吸收剂,具有优良的吸收紫外线的功能。

1.3透明度好

文物保护用封护材料要求要透明无眩光,能够清晰显示文物本体的面貌。基于纳米材料的体积效应,人类可以通过控制纳米材料的大小与形状,达到对同一种化学组成材料的基本特性如颜色、光、电、磁等性质的控制的目的。比如,TiO2抗紫外线,无毒且透明,可探索用于文物展陈的箱体,灯光等设施,国内已有相关的研究[7]。

1.4杀菌及防治微生物

细菌等微生物危害会引起文物特别是有机质文物的糟朽霉烂。封护材料要求具有一定的防腐性能。由于纳米材料有强大的吸附性,可用做抗菌材料,纳米二氧化钛,二氧化硅等抗菌性较好[8],可设计制备含有抗菌性纳米材料的复合材料用于文物保护。

2纳米复合材料在文物保护中的具体应用

纳米复合材料作为一种很具发展前途的新型材料,在多种类别的文物中都已经显示出巨大的应用前景。

2.1在金属类文物中的应用

纳米复合材料在金属类文物保护中具有广发的应用前景。对于青铜文物来说,青铜病是青铜器保存的大敌,而发生青铜病腐蚀的根本原因是在外界环境的作用下,青铜器本体发生了电化学腐蚀[9]。纳米复合材料的疏水性将有效阻止外界环境中的水分对文物本体的侵蚀,减缓电化学反应的发生。众所周知被称为铜镜中精品的“黑漆古”铜镜,表面层耐腐蚀性能优异,其耐腐蚀机理和形成机制受到了广泛的关注。相关实验和科学仪器分析表明[10],黑漆古铜镜表层就是由单一物相纳米SnO2组成的。

2.2在石质文物中的应用

石质文物的病害主要来自自然界的风化作用和环境污染的侵蚀,该类文物的保护需要对其表层进行防护。同传统的表面防护剂相比,纳米复合材料优势明显。邵高峰[11]等人研制了一种环保型石质文物防风化材料,他们把纳米TiO2和SiO2改性以后将其分散于水性氟碳树脂中,通过多组实验得到了最佳复合体系,分析数据表明该防风化剂具有很好的防紫外线和防水耐蚀性能,且无毒环保,是一种综合性能良好的防风化材料。

2.3在纸质文物中的应用

纸质文物由于材质本身和环境的影响易发生严重损害,特别是纸张的酸化加剧了其老化,人们也一直在探索研究各种脱酸技术[12]。意大利的RodoricoGiorgi等就成功的将纳米技术应用于纸质文物脱酸[13]。他们通过均相合成等方法制备了氢氧化钙在异丙醇溶剂中的纳米分散体系,将此体系应用于纸质样品中,不仅有效的降低了纸的酸度,同时多余的氢氧化钙通过和空气中的二氧化碳反应,会在纸纤维中形成一个碳酸钙储备层,能够长时期控制纸张的酸度,有利于纸质文物的长期保存。

2.4在纺织品类文物保护中的应用

纺织品一般属于天然高分子材料,由于天然的降解和氧化作用以及外界环境的影响,变得极其脆弱。该类文物的保存与保存环境息息相关,特别是紫外线和霉菌对其损伤巨大。挑选兼具抗紫外线和抗菌性能的纳米材料,可设计合成纳米液相分散体系。据文献报道,纳米Ti02在古代纺织品保护中的应用研究工作已经展开[14],实验结果表明,经纳米材料处理后的纺织文物有更好的屏蔽紫外线和抗菌能力。

3纳米材料在文物保护中的应用展望

二十一世纪将是“纳米的世纪”,纳米技术和纳米材料也给文物保护技术的发展提供了新的思路,这方面的研究工作国内外均已展开。作为一种新型学科,其基础理论研究还在逐步发展之中,对于文物这种不可再生资源,纳米材料的真正应用还需要在理论和技术经过反复验证并且相当成熟的时候实施。随着研究的不断深入,纳米材料在文物科技保护中的应用将会更加广泛。

【参考文献】

[1]周双林.文物保护用有机高分子材料及要求[J].四川文物,2003,3:94-96.

[2]白春礼.纳米科学与技术[M].云南科学技术出版社,1995.

[3]张中太,林元华,唐子龙,张俊英.纳米材料及其技术的应用前景[J].材料工程,2000,3:42-48.

[4]王苏新,张玉珍.纳米材料的特性及作用[J].江苏陶瓷,2001,34(2):5-6.

[5]王庆喜.文物环境与文物保护综论[J].湖南科技学院学报,2009,30(6):65-68.

[6]汪斌华,黄婉霞,李彦峰,郑洪平,涂铭旌.纳米TiO2和ZnO的抗老化性应用研究[J].四川大学学报:工程科学版,2003,35(4):103-105.

[7]王君龙,孙红梅,祝宝林.文物防紫外线保护新材料研究[J].渭南师范学院学报,2004,19(2):28-29.

[8]邱松山,姜翠翠,海金萍.纳米二氧化钛表面改性及其抑菌性能研究[J].食品与发酵科技,2010,46(6):5-7.

[9]傅丽英,陈中兴,蔡兰坤,祝鸿范,周浩.溶液pH值与氯离(下转第91页)(上接第62页)子对青铜腐蚀的影响[J].腐蚀与防护,2000,21(7):294-296.

[10]刘世伟,王世忠,王昌燧,周贵恩.“黑漆古”铜镜表层的结构分析[J].中国科学技术大学学报,2000,30(6):740-743.

[11]邵高峰,许淳淳.环保型石质文物防风化剂的研制[J].腐蚀与防护,2007,28(11):562-565.

[12]奚三彩.纸质文物脱酸与加固方法的综述[J].文物保护与考古科学,2008,20(z1),85-94.

你会喜欢下面的文章?