继电保护的灵敏度(6篇)

来源:收集

继电保护的灵敏度篇1

关键词:高压供电系统;电流速断保护;过电流保护;定值计算;灵敏度校验文献标识码:A

中图分类号:TM77文章编号:1009-2374(2016)04-0126-02DOI:10.13535/ki.11-4406/n.2016.04.063

1电力系统基准值及标幺值的计算方法

1.1基准值的计算方法

在计算高压短路电流时,一般只计电力线路、变压器等电抗元件的电抗,采用标幺值法计算。为了便于计算,在计算之前通常选定短路回路的基准容量、基准电压、基准电流及基准电抗等参数。基准容量通常为:=100MVA,基准电压通常选各级的平均电压,即:

==1.05

式中:

――基准电压,单位为kV

――平均电压,单位为kV

――额定电压,单位为kV

基准电流:=,单位为kA;基准电抗:==。

1.2标幺值的计算方法

在计算高压电网的短路电流时,采用标幺值算法十分方便。标幺值是一种相对值,即电路参数的有名值与基准值之比。线路电抗标幺值:

2利用基准电流和电抗标幺值计算短路电流周期电流有效值的方法

计算高压电网三相短路电流周期电流有效值时,可根据电网电压等级的不同,用该电压等级下系统的基准电流与短路点之前电抗标幺总值的商,即为短路时系统所承受的实际短路电流。即:

3电力系统配电变压器的继电保护整定计算方法

变压器10kV侧至用户变电所10kV电缆长度仅有几十米甚至几百米,经过参数计算,该段电缆线路的电抗极小,可以忽略不计。这种情况下可采用线路、变压器共用一套保护参数的方法,依据三相短路电流周期电流有效值来进行系统保护参数的整定计算及灵敏度校验。

4结合某公司配电系统现状的实例分析

该高压配电系统的一次接线图如图1所示,系统最大运行方式下前端阻抗标幺值为0.08Ω;系统最小运行方式下前端阻抗标幺值为0.2635Ω;35kV进线线路长度1km,电抗标幺值为0.012Ω,当K1、K2点发生短路时,计算断路器DL4、DL1的电流速断、过电流保护的整定值(――用于过电流保护时取1.2,用于电流速断保护时取1.3;=15)。由图1可知:变压器电抗标幺值:

X*T1=1.19;X*T2=3.6;X*T3=8

变压器10kV侧至用户变电所10kV电缆长度仅有几百米,经过参数计算,该段电缆线路的阻抗极小,可以忽略不计。当K1点发生三相短路时:

X*max1=0.2635+0.012+1.19+3.6=5.0655

X*min1=0.08+0.012+1.19+3.6=4.882

对于断路器DL4,速断整定值:

灵敏度校验:

故满足灵敏度要求。

过流整定值为:

灵敏度校验:

故满足灵敏度要求。当K2点发生三相短路时,计算方法同上。所以,对于上述配电系统,当K1、K2点分别发生三相短路时,DL4电流速断保护应整定为97.59A、时限0s,过电流保护应整定为3.34A、时限0.3s;DL1电流速断保护应整定为40A、时限0s,过电流保护应整定为4.5A、时限1.2s,该设置可保证:第一,当10kV馈线断路器出线端发生三相短路时,该10kV馈线开关可靠保护,迅速切除故障线路,35kV变高压侧断路器、低压侧断路器可靠不动作(主变低压侧断路器不设电流速断保护,仅设过电流保护作为10kV馈线断路器的远后备保护,在时限上较10kV馈线断路器的过电流保护时限增加0.3s),保证了10kV非故障线路正常供电。第二,当0.4kV馈线断路器出线端发生三相短路时,该0.4kV馈线断路器可靠保护,切除故障线路,10kV变压器高压侧断路器、低压侧断路器可靠不动作(10kV变压器低压侧断路器不设电流速断保护,仅设过电流保护作为0.4kV馈线断路器的远后备保护,在时限上较0.4kV馈线断路器的过电流保护时限增加0.3s),保证了0.4kV非故障线路正常供电。

5结语

对于35kV、10kV高压配电系统,开关站出线带2台及以上变压器时应遵循以下原则并结合本计算方法进行计算:(1)速断动作电流:躲过其中最大1台变压器低压侧最大三相短路电流整定;(2)过电流动作电流:躲过线路过负荷电流;(3)主变低压侧开关:主变低压侧只设过电流保护,作为10kV母线及10kV出线远后备保护,其动作电流应按照躲过主变最大负荷电流;(4)关于时间级差设定原则:对于微机型综合保护装置时间级差取0.3s。综上所述,利用标幺值算法计算高压系统短路电流简单易懂,技术人员可以参照上述方法快速、准确地对高压系统的保护装置进行整定计算,大大提高了公司供电的可靠性。

参考文献

[1]狄福清.变电站设备合理选型与运行检修[M].北京:机械工业出版社,2011.

[2]翁双安.供配电工程设计指导[M].北京:机械工业出版社,2008.

[3]陈生贵.电力系统继电保护[M].重庆:重庆大学出版社,2003.

继电保护的灵敏度篇2

[关键词]煤矿供电;继电保护装置;优化

中图分类号:TM77文献标识码:A文章编号:1009-914X(2015)44-0047-01

引言:煤矿供电系统是整个煤矿生产的动力来源,继电保护系统是供电系统安全运行的重要保障,它可以保证煤矿电网及负荷安全稳定地运行,几乎涉及范围较大的大型系统事故都与继电保护装置的不正确动作有直接或间接的关系。因此,合理配置继电保护装置是保障电网安全运行的重要条件。

低压电网短路状态是煤矿井下最严重的故障形式之一。为了使供电系统可靠、安全地运行,并将短路带来的损失和危害限制在最小范围内,必须进行井下低压电网短路电流的计算。一方面在选用各种开关设备时,需要计算出可能通过电器设备的最大短路电流及其产生的电动力效应和热效应,以便检验电气设备的动稳定性和热稳定性;另一方面在选择和整定继电保护装里时,需要计算出被保护范围内可能产生的最小短路电流,以便校验继电保护装置灵敏度,在被保护范围内发生任何短路时,保护装置可靠动作,迅速切断电源。

为了提高电力输送能力,最优解决方式就是提高供电电压,即在煤矿上采用10kV供电系统,将10kV电源直接送到井下。经过多年努力,目前的10kV并下开关设备、电动机、变压器、电缆等电气设备的各项指标已能够满足井下10kV供电的要求。

1整定原则的优化

1.1瞬时速断保护的优化

考虑到地面10kV出线开关的重要性,设置为三段式保护,瞬时速断动作电流按躲过下井线路末端最大三相短路电流来整定,在最小运行方式下发生两相短路时,至少具有线路全长约20%的保护范围。剩下的80%由限时速断来解决。

1.2限时速断保护的优化。

根据煤矿井下电网的特殊情况,各母线间短路电流的差距很小,虽在地面10kV至中央变电所之间增设电抗器,中央变电所之后多级保护之间动作电流的差距仍不能保证系统纵向的选择性。为解决这个问题,改变传统的II段时限与相邻线路I段时限配合的整定原则,在各出线处II段时限按与相邻线路出线处II段时限配合的原则进行整定;进线保护II段亦与相邻线路出线处II段进行配合。此原则降低了越级跳闸的可能性。

整定原则:按同一灵敏度系数法整定,在最小运行方式下线路末端发生两相短路时有足够的灵敏度。

1.3定时限过流保护的优化

一般定时限过流保护均按能躲过正常最大工作电流Ic.max整定,但考虑煤矿特点是没有自启动现象,故按躲过被保护线路的尖峰电流Ii.max来整定,或用尖峰电流来代替正常最大工作电流。线路尖峰电流的概念是:该线路其它设备正在以半小时最大负荷运行,而线路中一台最大容量的电动机正在启动时,在线路中产生的短时最大工作电流。启动电流倍数根据井下防爆电动机的实际情况可取5~6倍。定时过流要求能保护全长,故应用线路末端最小两相短路电流来校验其灵敏度Klm,Klm应不小于1.5。

2.系统优化方案效果分析

动作于跳闸的继电保护在技术上要满足四个基本要求,即可靠性、选择性、速动性和灵敏性。这四个基本要求是评价和研究继电保护性能的基础。继电保护的科学研究、设计、制造和运行的大部分工作也是围绕如何处理好这四者的辨证统一关系进行的。

2.1可靠性分析

从继电保护设置与设计的角度考虑,可靠性主要是要求有完备的后备保护和较高的灵敏度。对于10kV出线处,限时速断作为主保护保护全长,定时过流作为全线的近后备保护,瞬时速断作为线路

20%~80%全长的快速保护,保护的可靠性是较高的,另外,35kV变电所主变电流保护,还可以作为下井线路开关上保护的远后备保护。

其余各条线路,均由限时速断为主保护保护全长,定时过流为各自的近后备保护,且凡上级甚至再上一级的保护均可作为下级甚至再下一级相应保护的远后备保护,因而保护的可靠性没有问题。

2.2选择性分析

保护系统的横向选择性由过流保护本身的原理所保证,纵向选择性则主要由限时速断的短阶梯时限配合动作电流值的优化来保证。对于下井线路的瞬时速断,虽然无时限,但动作电流拉开较大的差距(因有限流电抗器的作用),而在中央变电所母线以后的任何地点发生短路,其短路电流均小于首端动作电流,不会使开关的瞬时速断动作,没有发生越级跳闸的可能。

对于限时速断,由于引入短阶梯延时原则,共设置0.6s,0.4s,0.2s三级阶梯延时,确保纵向的选择性;各级动作电流整定除第一级有一定差距外,其余各级因各级短路电流差距很小,故动作电流也不易拉开差距,但仅时限的差别就可以保证其纵向的选择性,不会发生越级跳闸,而且上级保护均可作为下级保护的远后备保护。

对于定时过流,同样是采用短阶梯延时原则,在10KV出线和中央变电所出线设置O.Os,0.6s两级阶梯延时,同样能确保该段保护的纵向选择性;各级动作电流可以拉开一定的差距,对确保选择性,亦起到一定的作用。

2.3速动性分析

对于下井线路全长的前20%部分,发生最小两相短路时,可实现无时限跳闸,当发生最大运行方式下的三相短路时,瞬时速断的保护距离可达80%左右,对于瞬时速断保护区外的短路,其短路电流小于首端动作电流,对主变压器的冲击相对较小,则由限时速断来保护。

2.4灵敏性分析

除瞬时速断的最小保护区有时为全长的20%外,其余所有的保护其范围均为全长,动作灵敏度均不小于I.5,故系统灵敏性完全有保证。

结束语

在电压等级不断增高,对供电可靠性要求越来越高的今天,重视配电系统继电保护的配置,增加配电系统继电保护的可靠性有着十分重要的意义。针对中低压配电系统继电保护现存问题,可以考虑借鉴高压系统中更多的保护配置及保护原则,通过从原理上进行简化来达到经济性和安全性的双重目的。

参考文献

[1]孔令英.煤矿6kV供电系统继电保护的设置与管理.山东煤炭科技.2001,1:16-17.

[2]李本瑜.母线保护中电压闭锁元件存在的问题及解决办法.电力系统自动化.2004,28(1):97-98.

[3]梁进秋.?微光机电系统国内外研究进展.?光机电信息,2000(8)?

[4]宋云夺编译.?光机电一体化业的未来.?光机电信息,2003(12)?

继电保护的灵敏度篇3

关键词:继电保护;原则;原理

中图分类号:TB文献标识码:A文章编号:1672-3198(2012)15-0194-01

电力系统中发生故障时,若不采取有效措施,势必给经济带来重大损失。因此,一旦电力系统中出现故障时,必须尽快地将故障切除,恢复正常运行,减少对用电单位的影响;而当出现不正常运行方式时要及时处理,以免引起设备故障。继电保护的任务就是自动、迅速、有选择性地将系统中的故障切除,或在系统出现不正常运行情况时,发出各种信号。

为了保证对用电单位的连续供电,故障切除后应尽快地使电气设备再次投入运行或由其他电源和设备来代替工作。因此,电力系统中除安装大量保护装置外,还需装设各种自动装置,如自动重合闸、备用电源自动投入以及自动低频减载装置等,它们虽属电力系统自动化的范畴,但与继电保护装置有密切关系。

继电保护是用来保护电力系统和用电设备安全可靠运行的一种装置。人们发现在电力系统中发生短路时,会产生很大的电流,因此,首先出现了反应电流的保护装置。最初的电流保护就是熔断器,而且把它作为重要电气设备的保护。随着电力系统的发展,设备和系统容量都越来越大,系统接线也越来越复杂,因此在许多情况下,单靠熔断器就不能很好地满足快速、灵敏、有选择地断开故障的要求,于是就开始采用继电器作用于断路器跳闸的继电保护装置。

通过以上论述,我们不难发现,对继电保护装置的基本要求是选择性、速动性、灵敏性和可靠性。

1选择性

系统发生故障时,继电保护装置应有选择地切除故障部分,使非故障部分保持继续运这种性能称为继电保护装置的选择性。继电保护的选择性,可采用下面二种方法获得:

(1)对带阶段特性与反时限特性的保护装置,用上下级断路器之间动作时限和灵敏性相互配合来得到选择性,即由故障点至电源方向逐渐降低其灵敏性与提高时限级差。具体要求是:时限级差应有0.5秒以上,上级断路器保护整定值应比串联的下级断路器保护整定值至少大1.1-1.15倍(即配合系数KPh)。

(2)继电保护装置无选择性动作而以自动重合闸或备用电源自动投入的方法来补救。

2速动性

短路时快速切除故障,可以缩小故障范围、减小短路电流引起的破坏程度、减小对用电单位的影响、提高电力系统的稳定。因此在可能条件下,继电保护装置应力求快速动作。上述性能称为继电保护装置的速动性。

故障切除时间等于继电保护装置动作时间与断路器跳闸时间之和。目前油断路器的跳闸时间约0.15-0.1秒,空气断路器的跳闸时间约0.05-0.06秒。一般快速保护装置的动作时间约0.08-0.12秒,现在高压电网中快速保护装置的最小动作时间约0.02-0.03秒。所以切除故障的最小时间可达0.07-0.09秒。对不同电压等级和不同结构的网络,切除故障的最小时间有不同要求。—般对220-330千伏的网络为0.04-0.1秒,对110千伏的网络为0.1-0.7秒,对配电网络为0.5-1.0秒。因此,目前生产的继电保护装置,一般都可满足网络对快速切除故障的要求。

但速动性与选择性在一定情况下是有矛盾的,根据选择性相互配合的要求,在某些情况下,不能用速动保护装置。

对于仅动作于信号的保护装置,如过负荷保护,不要求速动性。

3灵敏性

继电保护装置对被保护设备可能发生的故障和不正常运行状态的反应能力要强,要求能够灵敏地感受和动作。这种性能称为继电保护装置的灵敏性。

继电保护装置的灵敏性以灵敏系数来衡量。对不同作用的保护装置和被保扩设备所要求的灵敏系数是不同的,在《继电保护和自动装置设计技术规程》中都有规定。

4可靠性

继电保护装置对被保护范围内发生属于它应动作的各种故障和不正常运行状态,应保证不拒绝动作,而在正常运行或即使发生故障但不属于它应动作的情况下,应保证不误动作。这种性能称为继电保护装置的可靠性。保证继电保护装置能有足够的可靠性,应注意如下几点:要求选用的继电器质量好、结构简单、工作可靠;设计接线时,力求简化,使用继电器和继电器触点最少;正确选定继电保护的整定值。由于计算及检验的误差,保护的整定值应是在保护的计算值上乘一个可靠系数kk。一般可靠系数kk取1.2-1.5;高质量的安装、定期检验和维修继电器。

上述对继电保护装置的四个基本要求互相联系,又互相制约。因此,在考虑继电保护方案对应根据具体情况,对四个基本要求统筹兼顾,并辨证地看待和解决这四个基本要求之间的矛盾。最后,继电保护装置在满足四个基本要求下还应尽量简单。

继电保护装置必须具有正确区分被保护元件是处于正常运行状态还是发生了故障,是保护区内故障还是区外故障的功能。保护装置要实现这一功能,需要根据电力系统发生故障前后电气物理量变化的特征为基础来构成。

不对称短路时,出现相序分量,如两相及单相接地短路时,出现负序电流和负序电压分量;单相接地时,出现负序和零序电流和电压分量。这些分量在正常运行时是不出现的。利用短路故障时电气量的变化,便可构成各种原理的继电保护。此外,除了上述反应工频电气量的保护外,还有反应非工频电气量的保护。

继电保护的灵敏度篇4

Keywords:highimpedancedifferentialprotectionratioerror

论文关键词:高阻抗差动保护匝数比

论文摘要:本文阐述了大型电动机高阻抗差动保护原理及整定原则和整定实例。分析了CT匝数比误差对高阻抗差动保护的影响,并介绍了匝数比误差的测量方法。

1概述

高阻抗差动保护的主要优点:1、区外故障CT饱和时不易产生误动作。2、区内故障有较高的灵敏度。它主要作为母线、变压器、发电机、电动机等设备的主保护,在国外应用已十分广泛。高阻抗差动保护有其特殊性,要保证该保护的可靠性,应从CT选型、匹配、现场测试、保护整定等多方面共同努力。现在我国应制定高阻抗差动保护和相应CT的标准,结合现场实际情况编制相应的检验规程,使高阻抗差动保护更好的服务于电网,保证电网安全。

2高阻抗差动保护原理及定值整定原则

2.1高阻抗差动保护的动作原理:

(1)正常运行时:原理图见图1,I1=I2ij=i1-i2=0.因此,继电器两端电压:Uab=ij×Rj=0.Rj-继电器内部阻抗。

电流不流经继电器线圈,也不会产生电压,所以继电器不动作。

(2)电动机启动时:原理图见图2,由于电动机启动电流较大,是额定电流的6~8倍且含有较大的非周期分量。当TA1与TA2特性存在差异或剩磁不同,如有一个CT先饱和。假设TA2先饱和,TA2的励磁阻抗减小,二次电流i2减小。由于ij=i1-i2导致ij上升,继电器两端电压Uab上升。这样又进一步使TA2饱和,直至TA2完全饱和时,TA2的励磁阻抗几乎为零。继电器输入端仅承受i1在TA2的二次漏阻抗Z02和连接电缆电阻Rw产生的压降。

为了保证保护较高的灵敏度及可靠性,就应使Uab减少,也就是要求CT二次漏阻抗降低。这种情况下,继电器的整定值应大于Uab,才能保证继电器不误动。

(3)发生区内故障:原理图见图3,i1=Id/n(n-TA1电流互感器匝数比)ij=i1-ie≈i1Uab=ij×Rj≈i1Rj此时,电流流入继电器线圈、产生电压,检测出故障,继电器动作。由于TA1二次电流i1可分为流向CT励磁阻抗Zm的电流ie和流向继电器的电流ij。因此,励磁阻抗Zm越大,越能检测出更小的故障电流,保护的灵敏度就越高。

2.2高阻抗差动保护的整定原则及实例

(1)整定原则:

a)、保证当一侧CT完全饱和时,保护不误动。

式中:U-继电器整定值;US-保证不误动的电压值;IKMAX-启动电流值;

b)、保证在区内故障时,CT能提供足够的动作电压:

Uk≥2US(3)

式中:Uk-CT的额定拐点电压。

CT的额定拐点电压也称饱和起始电压:此电压为额定频率下的正弦电压加于被测CT二次绕组两端,一次绕组开路,测量励磁电流,当电压每增加10%时,励磁电流的增加不能超过50%。

c)、校验差动保护的灵敏度:在最小运行方式下,电动机机端两相短路时,灵敏系数应大于等于2。

式中Iprim-保证继电器可靠动作的一次电流;n、Us-同前所述;m-构成差动保护每相CT数目;Ie-在Us作用下的CT励磁电流;Iu-在Us作用下的保护电阻器的电流;Rs-继电器的内阻抗。

(2)、整定实例:

电动机参数:P=7460KW;Ir=816A。CT参数:匝数比n=600;Rin=1.774Ω;Uk=170V。

CT二次侧电缆参数:现场实测Rm=4.21Ω。

差动继电器(ABB-SPAE010)参数:整定范围0.4-1.2Un;Un=50、100、200可选;Rs=6K。

计算Us:US=IKMAX(Rin+Rm)/n=10Ir(Rin+Rm)/n=10×816(1.774+4.21)/600=81.38V

选取Us=82V

校验Uk:Uk=170VUs在85V以下即可满足要求。

确定继电器定值:选取Un=100;整定点为0.82;实际定值为82V。

校验灵敏度:通过查CT及保护电阻器的伏安特性曲线可得在82V电压下的电流:Ie=0.03AIu=0.006AIprim=n(Us/Rs+mIe+Iu)=600(82/6000+2×0.03+0.006)=47.8A。

由此可见,高阻抗差动保护的灵敏度相当高,这也是该保护的主要优点之一。

3高阻抗差动保护的应用

3.1高阻抗差动保护在应用中除了应注意:

(1)、CT极性及接线应正确;(2)、二次接线端子不应松动;(3)、不应误整定;(4)、CT回路应一点接地等。还应注意:(1)、CT二次应专用;(2)、高阻抗差动保护所用CT是一种特别的保护用CT。为了避免继电器的误动作,对CT有三个要求:励磁阻抗高、二次漏抗低和匝数比误差小。高阻抗差动保护用的CT设计要点是:依据拐点电压及拐点电压下的励磁电流来确定铁芯尺寸。对于高阻抗差动保护用CT的特性匹配至关重要,在实际选用时应采用同一厂家,同一批产品性相近、匝数比相同的CT。

3.2下面主要探讨CT匝数比误差对高阻抗差动保护的影响

(1)匝数比n为二次绕组的匝数与一次绕组匝数的比值。匝数比的误差εt定义如下:

εt=(n-Kn)/Kn(6)

式中,Kn-标称电流比。

国外标准中规定此种CT的匝数比误差为±0.25%。

(2)匝数比误差要小:

当电动机启动时(见图2),电流互感器TA2未饱和,CT的二次电流接近于匝数比换算得来的数值,这是由于TA2未饱和时励磁阻抗较高的原因。一般情况下高阻抗差动保护用CT励磁阻抗为几十千欧姆的数量级。如果匝数比的分散性很大,TA1和TA2的二次电流i1和i2不能互相抵消,该差值电流ij流经继电器线圈,即成为产生误动作的原因。

(3)、匝数比误差规定为±0.25%,对于不同匝数比CT不尽合理。匝数较大CT容易满足该规定并且能保证保护不发生误动作。匝数较小CT即使满足该规定,在电动机启动时的差电压也较大,足以造成保护误动作。

下面列举两个例子:

a).两侧CT匝数比均满足±0.25%。假设:n1=3609(正误差);n2=3591(负误差)。

匝数比误差产生的不平衡电流:ij=(10×3600/3591-10×3600/3609)=0.05A

继电器两端不平衡电压:Uj=ij×Rs=0.05×6000=300V

Uj大于继电器整定值,保护在这种情况下将不可避免的发生误动作。

b).两侧CT匝数比相对误差满足±0.25。假设:n1=3609;n2=3600。

匝数比误差产生的不平衡电流:

ij=(10×3600/3600-10×3600/3609)=0.025A

继电器两端不平衡电压:Uj=ij×Rs=0.025×6000=150V

Uj小于继电器整定值,可满足工程要求。

例2:所有参数与整定计算实例相同。

a).两侧CT匝数比均满足±0.25%。

设:n1=601(正误差);n2=599(负误差)。

匝数比误差产生的不平衡电流:

Uj远大于继电器整定值(82V),保护将发生误动作。

b).两侧CT匝数比相对误差满足±0.25%,假设:n1=601n2=600

匝数比误差产生的不平衡电流:

Uj=ij×Rs=0.0226×6000=135V

Uj仍大于继电器整定值,保护将发生误动作。

通过上述两例足以说明对于高阻抗差动保护CT选择的苛刻条件,选择时应遵守CT匝数比误差相近的原则。建议在整定原则中增加继电器整定电压应大于由于匝数比误差产生的差电压,以保证高阻抗差动保护的可靠性。

3.3匝数比误差的测量

测量的方法有两种:

第一种:在CT二次侧短路状态下,测量流经额定一次电流i1时的比值差f1,设此时励磁电流为i0,则f1=-εt-i0/i1

二次回路连接与二次绕组阻抗相等的负荷,在额定一次电流的1/2电流下测量比值差f2,这时仍设励磁电流为i0,则f2=-εt-2i0/i1

匝数比误差为:εt=f2-2f1

第二种方法:在测量CT伏安特性的同时测量一次绕组的电压。

继电保护的灵敏度篇5

【关键词】供电;整定;优化

Abstract:Coalminepowersupplysystemisthepowersourceofthecoalmineproduction,andrelayprotectionsystemisanimportantguaranteeofthesafeoperationofthepowersupplysystem,sothecoalrelayprotectiondeviceshouldmeetreliability,selectivity,quickactingandsensitivityofthefourbasicrequirements,andrelayprotectionsettingprincipleofoptimizationandcalculationistoensurethatthemajormeansof\"foursex\".

Keywords:Thepowersupply;setting;optimize

1.前言

煤矿供电系统是整个煤矿生产的主要动力源泉,而继电保护是供电系统安全运行的重要保障,它可以保证煤矿电网及负荷安全稳定地运行,并且在其出现事故时能够迅速、准确地切除故障元件。煤矿继电保护装置应满足可靠性、选择性、速动性和灵敏性四个基本要求,而继电保护的整定原则的优化及计算是确保“四性”的主要手段。以地面6KV出线为例进行整定研究。

2.整定原则的优化

2.1瞬时速断保护的优化

考虑到地面6kV出线开关的重要性,设置为三段式保护,瞬时速断动作电流按躲过下井线路末端最大三相短路电流来整定,在最小运行方式下发生两相短路时,至少具有线路全长约20%的保护范围,剩下的80%由限时速断来解决。中央变电所和采区变电所的出线开关,瞬时速断用常规的按躲过线路末端最大三相短路电流的整定原则代替原有的按上级速断保护的0.9倍进行整定的原则。虽然由于电缆线路太短,在最小运行方式下线路末端两相短路时保护区很短,但由于Ⅱ段的限时速断保护灵敏度较高,并具有短延时,可以在较短时间内就切除故障,因此不需要I段有很高的灵敏度。中央变电所和采区变电所的进线开关,考虑到优先保证保护的选择性,不设瞬时速断。

整定原则:按最大运行方式下线路末端三相短路整定。

I'set=KK*Idmax

校验公式:

一般Lb.min.2/L>20%时符合整定要求。

2.2限时速断保护的优化

根据煤矿井下电网的特殊情况,各母线间短路电流的差距很小,虽在地面6kV至中央变之间增设电抗器,中央变之后多级保护之间动作电流的差距仍不能保证系统纵向的选择性。为解决这个问题,改变传统的Ⅱ段时限与相邻线路I段时限配合的整定原则,在各出线处Ⅱ段时限按与相邻线路出线处Ⅱ段时限配合的原则进行整定;进线保护Ⅱ段亦与相邻线路出线处Ⅱ段进行配合。此原则降低了越级跳闸的可能性。

整定原则:按同一灵敏度系数法整定,在最小运行方式下线路末端发生两相短路时有足够的灵敏度。

定值:

式中:I''set――Ⅱ段限时速断保护一次动作电流;

Id.2.min――最小运行方式下,d2点两相短路电流;

Klm――灵敏系数,取1.5。

校验公式:I''set>l.5*Iemax

Iemax――-最大负荷电流。

2.3定时限过流保护的优化

一般定时限过流保护均按能躲过正常最大工作电流Ic.max整定,但考虑煤矿特点是没有自启动现象,故按躲过被保护线路的尖峰电流Iimax来整定,或用尖峰电流来代替正常最大工作电流。线路尖峰电流的概念是:该线路其它设备正在以半小时最大负荷运行,而线路中一台最大容量的电动机正在启动时,在线路中产生的短时最大工作电流。启动电流倍数根据井下防爆电动机的实际情况可取5~6倍。定时过流要求能保护全长,故应用线路末端最小两相短路电流来校验其灵敏度Klm,Klm应不小于1.5。

整定原则:按躲过尖峰电流计算。

定值:

式中,I''set――Ⅲ段定时限过流保护一次侧定值;

Kk――可靠系数,根据不同继电器类型取值;

Kjx――继电器接线系数;

Iimax――保护线路尖峰电流;

Kf――回系数。

3.整体配合的优化

根据前面分析,考虑到煤矿供电系统的特点,以及井下电缆网络发生短路故障的几率远高于地面6kV架空线路等,总体的线路保护系统优化方案,既要限制井下发生短路时大电流对上级变电所主变压器的冲击,又要兼顾井上、井下保护动作值的配合,还要考虑全线电压损失和保护系统的可靠性,选择性等要求。采区变电所出线保护保持原有两段式保护不变,I段的动作电流突破常规方法按保护线路全长处理,但应躲过定时过流的动作电流;Ⅱ段延时改为为0.2s。有利于快速切除故障,并能在时限上更好的与上级保护配合。

4.结语

动作于跳闸的继电保护在技术上要满足四个基本要求,即可靠性、选择性、速动性和灵敏性。这四个基本要求是评价和研究继电保护性能的基础。继电保护的科学研究、设计、制造和运行的大部分工作也是围绕如何处理好这四者的辨证统一关系进行的。

参考文献

[1]黄益庄.变电站综合自动化技术[M].中国电力出版社,2000.

[2]李京捷.煤矿6KV电力网的继电保护措施探析[J].煤矿机电,2005.

继电保护的灵敏度篇6

关键词:电力系统;继电保护;电气故障;四性要求;

中图分类号:F407文献标识码:A

0.引言

随着我国社会经济的快速发展,以及工业化进程的加快,电网建设规模在不断扩大。近年来,电力系统管理体制深化改革,变电所自动化技术在不断进步,目前很多变电站已逐步实现无人值守。与此同时,对电力系统可靠运行也提出了更高要求。电力系统由于其覆盖地域极其辽阔、运行环境极其复杂,以及各种人为因素影响,电气故障发生是不能完全避免的。在电力系统中任何一处发生事故,都有可能对电力系统运行产生重大影响,为确保电力系统正常运行,必须正确地配置继电保护装置。

1.微机型继电保护主要作用

电力系统继电保护一词泛指继电保护技术和由各种继电保护装置组成的继电保护系统,包括继电保护的原理设计、配置、整定、调试等技术,也包括由获取电量信息的电压、电流互感器二次回路,经过继电保护装置到断路器跳闸线圈的一整套具体设备。

电力系统继电保护的基本作用是:

(1)自动、迅速、有选择性地将故障元件从电力系统中切除,使故障元件免于继续遭到损坏,保证其他无故障部分迅速恢复正常运行;

(2)反应电气设备的不正常运行状态,并根据运行维护条件,而动作于发出信号或跳闸。此时一般不要求迅速动作,而是根据对电力系统及其元件的危害程度规定一定的延时,以免暂短的运行波动造成不必要的动作和干扰引起的误动。

2.微机型继电保护原理

要实现电力系统继电保护的关键作用,保证电力系统内各元件以致整个电力系统的安全运行,首先必须“区分”电力系统的正常、不正常工作和故障三种运行状态,“甄别”出发生故障和出现异常的元件。而要进行“区分和甄别”,必须寻找电力元件在这三种运行状态下的可测参量(继电保护主要测电气量)的差异,提取和利用这些可测参量的差异,实现对正常、不正常工作和故障元件的快速“区分”。依据可测电气量的不同差异,可以构成不同原理的继电保护。依据电气量与非电气量在正常运行与故障状态下差异,形成了元件的不同保护装置。

目前已经发现不同运行状态下具有明显差异的电气量有:流过电力元件的相电流、序电流、功率及其方向;元件的运行相电压幅值、序电压幅值;元件的电压与电流的比值即“测量阻抗”等。根据不同的电气量特性,依据相关原理,构成了相应的元件保护。

在正常运行时,线路上流过的是它的负荷电流,假设在线路上发生三相短路,从电源到短路点之间将流过很大的短路电流。利用流过被保护元件中电流幅值的增大,可以构成过电流保护。

正常运行时,各变电所母线上的电压一般都在额定电压±5%~±10%范围内变化,且靠近电源端母线上的电压略高。短路后,各变电所母线电压有不同程度的降低,离短路点越近,电压降得越低,短路点的相间或对地电压降低到零。利用短路时电压幅值的降低,可以构成低电压保护。同样,在正常运行时,线路始端的电压与电流之比反映的是该线路与供电负荷的等值阻抗及负荷阻抗角(功率因数角),其数值一般较大,阻抗角较小。短路后,线路始端的电压与电流之比反映的是该测量点到短路点之间线路段的阻抗,其值较小,如不考虑分布电容时一般正比于该线路段的长度,阻抗角为线路阻抗角,较大。利用测量阻抗幅值的降低和阻抗角的变大,可以构成距离保护。

此外,利用每个电力元件在内部与外部短路时两侧电流相量的差别可以构成电流差动保护,利用两侧电流相位的差别可以构成电流相位差动保护,利用两侧功率方向的差别可以构成方向比较式纵联保护,利用两侧测量阻抗的大小和方向等还可以构成其他原理的纵联保护。利用某种通信通道同时比较被保护元件两侧正常运行与故障时电气量差异的保护,称为纵联保护。

除反应上述各种电气量变化特征的保护外,还可以根据电力元件的特点实现反应非电量特征的保护。例如,当变压器油箱内部的绕组短路时,反应于变压器油受热分解所产生的气体,构成瓦斯保护。

3.继电保护装置基本要求

当电力系统出现故障或异常状态时,继电保护能够自动地、有选择性地在最短时间和最小范围内,将故障设备从系统中切除,也能够及时向相关负责人员发出警告信号,提醒相关人员及时采取解决措施,这样继电保护不但能够有效防止设备的进一步损坏,而且能够降低引起相邻地区连带故障的机率。同时还可以有效防止系统故障范围的进一步扩大,确保未发生故障部分继续维持正常使用。动作于跳闸的继电保护,在技术上一般应满足四个基本要求,即可靠性、选择性、速动性和灵敏性,“四性”间相辅相成,相互制约,针对不同使用条件,分别进行配合。

一是可靠性:可靠性包括安全性和信赖性,是对继电保护的最根本要求。所谓安全性,是要求继电保护在不需要它动作时可靠不动作,即不发生误动作。所谓信赖性,是要求继电保护在规定的保护范围内发生了应该动作的故障时可靠动作,即不发生拒绝动作。继电保护的误动作和拒绝动作都会给电力系统造成严重危害。然而,提高不误动作的安全性措施与提高不拒动的信赖性措施往往是矛盾的。在设计与选用继电保护时,需要依据被保护对象的具体情况,对这两方面的性能要求适当地予以协调。

二是选择性:继电保护的选择性是指保护装置动作时,在可能最小的区间内将故障从电力系统中断开,最大限度地保证系统中无故障部分仍能继续安全运行。这种选择性的保证,除利用一定的延时使本线路的后备保护与主保护正确配合外,还须注意相邻元件后备保护之间的正确配合。其一是上级电力元件后备保护的灵敏度要低于下级元件后备保护的灵敏度;其二是上级电力元件后备保护的动作时间要大于下级元件后备保护的动作时间。

三是速动性:继电保护的速动性是指尽可能快地切除故障,以减少设备及用户在大短路电流、低电压下运行的时间,降低设备的损坏程度,提高电力系统并列运行的稳定性。

四是灵敏性:继电保护的灵敏性,是指对于其保护范围内发生故障或不正常运行状态的反应能力。满足灵敏性要求的保护装置应该是在规定的保护范围内部故障时,在系统任意的运行条件下,无论短路点的位置、短路的类型如何,以及短路点是否有过渡电阻,当发生短路时都能敏锐感觉。正确反应。灵敏性通常用灵敏系数或灵敏度来衡量,增大灵敏度,增加了保护动作的信赖性,但有时与安全性相矛盾。

以上四个基本要求是评价和研究继电保护性能的基础,在它们之间,既有矛盾又要统一,因此要根据被保护元件在电力系统中的作用,使以上四个基本要求在所配置的保护中得到统一,更好的发挥继电保护装置在电力系统安全稳定运行中的作用。

4.总结

电力系统安全运行需要完善的继电保护作为支撑,没有安装保护的电力元件,是不允许接入电力系统工作的。纵横交织错综复杂的电力系统中每一个电力元件如何配置保护、配备几套继电保护,以及各电力元件继电保护之间配合,需要根据电力元件的重要程度、电力元件对电力系统影响的重要程度、以及电力元件自身特性等因素决定。论文中介绍了电力系统继电保护基本概念及任务,并阐述了继电保护的基本原理与工作配合,最后描述了继电保护的“四性”要求,为刚入门的学生以及从事电力系统继电保护工作的初学者能更快的认知继电保护装置提供了依据。

参考文献

[1]张保会,尹项根主编.电力系统继电保护(第二版).北京:中国电力出版社,2009.12.

[2]国家电力调度通信中心编著.国家电网公司继电保护培训教材(上、下册).北京:中国电力出版社,2009.

[3]国家电力调度通信中心编.电力系统继电保护实用技术问答(第二版).北京:中国电力出版社,1999.11.

你会喜欢下面的文章?

    植树节的作文范文(整理16篇)

    - 阅0

    植树节的作文范文篇1今天是植树节,阳光灿烂,老师安排我们一起去植树,我们开开心心地拿起水桶,抗起铁铲,带上树苗地去植树了。我们兴高采烈地来到路边,我和小明一组,我挖坑,小明提水.....

    3年级日记范文300字400字(精选10篇

    - 阅0

    3年级日记范文300字篇120__年_月_日星期_天气_今天,天蓝得像一张蓝纸,几多轻柔的白云飘在空中,雪白雪白的,像棉絮一般,随风缓缓浮游着。我的心情如同今天的天气似的。于是,我拉着.....

    小学数学教师年终工作总结范文七(

    - 阅0

    小学数学教师年终工作总结篇1转眼间,本学期的教学工作已画上圆满的句号。本学期中,我承担一年级两个班的数学教学工作。回首走过的岁月,内心有些许的欣慰,也有几分感慨。现将XX.....

    房产销售人员季度工作总结范文(整

    - 阅0

    房产销售人员季度工作总结范文篇1在繁忙的工作中不知不觉又迎来了新的一年,回顾这一年的工作历程,作为__企业的每一名员工,我们深深感到__企业之蓬勃发展的热气,__人之拼搏的精.....